Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

4-spin plaquette singlet state in the Shastry–Sutherland compound SrCu2(BO3)2

Abstract

The study of interacting spin systems is of fundamental importance for modern condensed-matter physics. On frustrated lattices, magnetic exchange interactions cannot be simultaneously satisfied, and often give rise to competing exotic ground states1. The frustrated two-dimensional Shastry–Sutherland lattice2 realized by SrCu2(BO3)2 (refs 3,4) is an important test case for our understanding of quantum magnetism. It was constructed to have an exactly solvable 2-spin dimer singlet ground state within a certain range of exchange parameters and frustration. While the exact dimer state and the antiferromagnetic order at both ends of the phase diagram are well known, the ground state and spin correlations in the intermediate frustration range have been widely debated2,4,5,6,7,8,9,10,11,12,13,14. We report here the first experimental identification of the conjectured plaquette singlet intermediate phase in SrCu2(BO3)2. It is observed by inelastic neutron scattering after pressure tuning to 21.5 kbar. This gapped singlet state leads to a transition to long-range antiferromagnetic order above 40 kbar, consistent with the existence of a deconfined quantum critical point.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Phase diagram of SrCu2(BO3)2 as a function of pressure and temperature, including excitation energies.
Figure 2: Pressure dependence of the magnetic susceptibility and of the exchange parameters in SrCu2(BO3)2.
Figure 3: Inelastic neutron scattering measurements of SrCu2(BO3)2 under hydrostatic pressure.
Figure 4: Plaquette phase in SrCu2(BO3)2.

Similar content being viewed by others

References

  1. Lhuillier, C. & Misguich, G. in High Magnetic Fields (eds Berthier, C., Lvy, L. & Martinez, G.) 161–190 (Lecture Notes in Physics, 595, Springer, 2001).

    Google Scholar 

  2. Shastry, B. S. & Sutherland, B. Exact ground state of a quantum mechanical antiferromagnet. Physica B+C 108, 1069–1070 (1981).

    Article  ADS  Google Scholar 

  3. Kageyama, H. et al. Exact dimer ground state and quantized magnetization plateaus in the two-dimensional spin system SrCu2(BO3)2 . Phys. Rev. Lett. 82, 3168–3171 (1999).

    Article  ADS  Google Scholar 

  4. Miyahara, S. & Ueda, K. Theory of the orthogonal dimer Heisenberg spin model for SrCu2(BO3)2 . J. Phys. Condens. Matter 15, R327 (2003).

    Article  ADS  Google Scholar 

  5. Albrecht, M. & Mila, F. First-order transition between magnetic order and valence bond order in a 2D frustrated Heisenberg model. Europhys. Lett. 34, 145–150 (1996).

    Article  ADS  Google Scholar 

  6. Weihong, Z., Hamer, C. J. & Oitmaa, J. Series expansions for a Heisenberg antiferromagnetic model for SrCu2(BO3)2 . Phys. Rev. B 60, 6608–6616 (1999).

    Article  ADS  Google Scholar 

  7. Müller-Hartmann, E., Singh, R. R. P., Knetter, C. & Uhrig, G. S. Exact demonstration of magnetization plateaus and first-order Dimer-Néel phase transitions in a modified Shastry–Sutherland model for SrCu2(BO3)2 . Phys. Rev. Lett. 84, 1808–1811 (2000).

    Article  ADS  Google Scholar 

  8. Knetter, C., Bühler, A., Müller-Hartmann, E. & Uhrig, G. S. Dispersion and symmetry of bound states in the Shastry–Sutherland model. Phys. Rev. Lett. 85, 3958–3961 (2000).

    Article  ADS  Google Scholar 

  9. Koga, A. & Kawakami, N. Quantum phase transitions in the Shastry–Sutherland model for SrCu2(BO3)2 . Phys. Rev. Lett. 84, 4461–4464 (2000).

    Article  ADS  Google Scholar 

  10. Takushima, Y., Koga, A. & Kawakami, N. Competing spin-gap phases in a frustrated quantum spin system in two dimensions. J. Phys. Soc. Jpn 70, 1369–1374 (2001).

    Article  ADS  Google Scholar 

  11. Zheng, W., Oitmaa, J. & Hamer, C. J. Phase diagram of the Shastry–Sutherland antiferromagnet. Phys. Rev. B 65, 014408 (2001).

    Article  ADS  Google Scholar 

  12. Läuchli, A., Wessel, S. & Sigrist, M. Phase diagram of the quadrumerized Shastry–Sutherland model. Phys. Rev. B 66, 014401 (2002).

    Article  ADS  Google Scholar 

  13. Al Hajj, M. & Malrieu, J.-P. Phase transitions in the Shastry–Sutherland lattice. Phys. Rev. B 72, 094436 (2005).

    Article  ADS  Google Scholar 

  14. Ronquillo, D. C. & Peterson, M. R. Identifying topological order in the Shastry–Sutherland model via entanglement entropy. Phys. Rev. B 90, 201108(R) (2014).

    Article  ADS  Google Scholar 

  15. Majumdar, C. K. & Ghosh, D. K. On next nearest neighbor interaction in linear chain. I. J. Math. Phys. 10, 1388–1398 (1969).

    Article  ADS  MathSciNet  Google Scholar 

  16. Dalla Piazza, B. et al. Fractional excitations in the square-lattice quantum antiferromagnet. Nat. Phys. 11, 62–68 (2015).

    Article  Google Scholar 

  17. Momoi, T. & Totsuka, K. Magnetization plateaus of the Shastry–Sutherland model for SrCu2(BO3)2: spin-density wave, supersolid, and bound states. Phys. Rev. B 62, 15067–15078 (2000).

    Article  ADS  Google Scholar 

  18. Dorier, J., Schmidt, K. P. & Mila, F. Theory of magnetization plateaux in the Shastry–Sutherland model. Phys. Rev. Lett. 101, 250402 (2008).

    Article  ADS  Google Scholar 

  19. Matsuda, Y. H. et al. Magnetization of SrCu2(BO3)2 in Ultrahigh Magnetic Fields up to 118 T. Phys. Rev. Lett. 111, 137204 (2013).

    Article  ADS  Google Scholar 

  20. Corboz, P. & Mila, F. Tensor network study of the Shastry–Sutherland model in zero magnetic field. Phys. Rev. B 87, 115144 (2013).

    Article  ADS  Google Scholar 

  21. Senthil, T., Vishwanath, A., Balents, L., Sachdev, S. & Fisher, M. P. A. Deconfined quantum critical points. Science 303, 1490–1494 (2004).

    Article  ADS  Google Scholar 

  22. Merchant, P. et al. Quantum and classical criticality in a dimerized quantum antiferromagnet. Nat. Phys. 10, 373–379 (2014).

    Article  Google Scholar 

  23. Kageyama, H., Mushnikov, N. V., Yamada, M., Goto, T. & Ueda, Y. Quantum phase transitions in the orthogonal dimer system SrCu2(BO3)2 . Physica B 329–333, 1020–1023 (2003).

    Article  ADS  Google Scholar 

  24. Sakurai, T. et al. High-field and high-pressure ESR measurements of SrCu2(BO3)2 . J. Phys. Conf. Ser. 150, 042171 (2009).

    Article  Google Scholar 

  25. Waki, T. et al. A novel ordered phase in SrCu2(BO3)2 under high pressure. J. Phys. Soc. Jpn. 76, 073710 (2007).

    Article  ADS  Google Scholar 

  26. Haravifard, S. et al. Continuous and discontinuous quantum phase transitions in a model two-dimensional magnet. Proc. Natl Acad. Sci. USA 109, 2286–2289 (2012).

    Article  ADS  Google Scholar 

  27. Loa, I. et al. Crystal structure and lattice dynamics of at high pressures. Physica B 359–361, 980–982 (2005).

    Article  ADS  Google Scholar 

  28. Zayed, M. E. et al. Temperature dependence of the pressure induced monoclinic distortion in the spin Shastry–Sutherland compound SrCu2(BO3)2 . Solid State Commun. 186, 13–17 (2014).

    Article  ADS  Google Scholar 

  29. Haravifard, S. et al. Emergence of long-range order in sheets of magnetic dimers. Proc. Natl Acad. Sci. USA 111, 14372–14377 (2014).

    Article  ADS  Google Scholar 

  30. Zayed, M. Novel States in Magnetic Materials under Extreme Conditions. A High Pressure Neutron Scattering Study of the Shastry–Sutherland Compound SrCu 2 (BO 3)2 PhD thesis, ETH Zurich (2010).

  31. Ruegg, C. et al. Bose-Einstein condensation of the triplet states in the magnetic insulator TlCuCl3 . Nature 423, 62–65 (2003).

    Article  ADS  Google Scholar 

  32. Haravifard, S. et al. Crystallization of spin superlattices with pressure and field in the layered magnet SrCu2(BO3)2 . Nat. Commun. 7, 11956 (2016).

    Article  ADS  Google Scholar 

  33. Schneidewind, A. & Čermàk, P. PANDA: Cold three axes spectrometer. J. Large-Scale Res. Facil. 1, A12 (2015).

    Article  Google Scholar 

  34. Klotz, S. Techniques in High Pressure Neutron Scattering (CRC Press, Taylor and Francis, 2013).

    Google Scholar 

  35. Zayed, M. E. et al. Correlated decay of triplet excitations in the Shastry–Sutherland compound SrCu2(BO3)2 . Phys. Rev. Lett. 113, 067201 (2014).

    Article  ADS  Google Scholar 

  36. Klotz, S. Phonon dispersion curves by inelastic neutron scattering to 12 GPa. Z. Kristallogr. 216, 420–429 (2001).

    Google Scholar 

  37. Kakurai, K. et al. Neutron scattering investigation on quantum spin system SrCu2(BO3)2 . Prog. Theor. Phys. Suppl. 159, 22–32 (2005).

    Article  ADS  Google Scholar 

  38. Koga, A., Okunishi, K. & Kawakami, N. First-order quantum phase transition in the orthogonal-dimer spin chain. Phys. Rev. B 62, 5558–5563 (2000).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank A. Magee for her contributions to the susceptibility measurements, M. Merlini and M. Hanfland for support during high-pressure X-ray diffraction experiments at the ESRF, and M. Ay and P. Link for assistance during neutron scattering experiments. We acknowledge F. Mila and B. Normand for many useful discussions. We also thank CamCool Research Ltd for supplying the pressure cells for the SQUID measurements. This work is based on experiments performed at the Swiss spallation neutron source SINQ, Paul Scherrer Institute, Villigen, Switzerland, at the FRM-2, Munich, Germany, and at the ILL, Grenoble, France. We thank the Swiss National Science Foundation SNF and the Royal Society (UK) for financial support. The work in London and Cambridge was supported by the EPSRC. J.L.J. acknowledges the Science Without Borders program of CNPq/MCTI-Brazil and C.P. acknowledges financial support from the National Research Foundation (NRF) of Singapore, through NRF Investigatorship (Reference No. NRF-NRFI2015-04).

Author information

Authors and Affiliations

Authors

Contributions

M.E.Z., C.R. and H.M.R. designed the research, performed the experiments and analysed the data. A.M.L. computed the magnetic susceptibility by exact diagonalization. C.P., S.S.S. and M.E. helped with susceptibility experiments. T.S., S.K., G.H. and R.A.S. provided neutron high-pressure techniques. M.B., M.J.-R., A.S., V.P. and T.S. provided support for neutron experiments. E.P., M.S. and K.C. synthesized the SrCu2(BO3)2 samples. J.L.J. and D.F.M. contributed to interpretation of the data. M.E.Z., C.R. and H.M.R. wrote the manuscript with contributions from all co-authors.

Corresponding author

Correspondence to M. E. Zayed.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 454 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zayed, M., Rüegg, C., Larrea J., J. et al. 4-spin plaquette singlet state in the Shastry–Sutherland compound SrCu2(BO3)2. Nature Phys 13, 962–966 (2017). https://doi.org/10.1038/nphys4190

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nphys4190

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing