Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Tunable refraction and reflection of self-confined light beams

Abstract

Light filaments or optical spatial solitons are self-confined (non-spreading) beams that originate from the balance between diffraction and self-focusing in nonlinear optical media (those with a response dependent on the level of excitation)1,2,3. Owing to their ability to self-trap as well as to guide weaker signals (even if differing in colour or modulation format) within the waveguides or ‘light-pipes’ they induce, optical spatial solitons could form the basis of future all-optical processing networks4,5. One of the most interesting challenges in soliton propagation and engineering concerns light filaments incident on linear/nonlinear or nonlinear/nonlinear interfaces. Here we report the robust propagation, refraction and reflection of optical spatial solitons at the interface between two regions of a nematic liquid crystal. The ability to independently tune the optical properties of each region enables us to steer the beams by refraction and total internal reflection by as much as −18 and +22 degrees, respectively. Moreover, the extended (nonlocal) and anisotropic response of our system supports polarization healing of the solitons across the interface as well as non-specular filament reflection. Finally, exploiting the inherent and all-optically tunable birefringence, we demonstrate unprecedented nonlinear Goos–Hänchen lateral shifts in excess of 0.5 mm.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The sample and its electro-optic response.
Figure 2: Intensity evolution of a 4.5 mW (input power) nematicon launched at ΦI=0.44π with respect to t in a sample with ρ0=0.5π and ξ0=0.017π.
Figure 3: Filament trajectories in the plane y z versus voltage difference ΔV between regions 1 and 2.
Figure 4: Asymmetric TIR in the presence of optical anisotropy.
Figure 5: Nonlinear Goos–Hänchen shift under TIR.

Similar content being viewed by others

References

  1. Stegeman, G. I. & Segev, M. Optical spatial solitons and their interactions: Universality and diversity. Science 286, 1518–1523 (1999).

    Article  Google Scholar 

  2. Trillo, S. & Torruellas, W. (eds) in Spatial Solitons (Springer, Berlin, 2001).

  3. Kivshar, Y. S. & Agrawal, G. P. Optical Solitons: From Fibers to Photonic Crystals (Academic, New York, 2003).

    Google Scholar 

  4. Snyder, A. W. & Ladouceur, F. Light guiding light. Opt. Photon. News 10, 35–37 (1999).

    Article  Google Scholar 

  5. Kivshar, Y. S. & Stegeman, G. I. Spatial optical solitons: Guiding light for future technologies. Opt. Photon. News 13, 59–63 (2002).

    Article  ADS  Google Scholar 

  6. Tomlinson, W. J., Gordon, J. P., Smith, P. W. & Kaplan, A. E. Reflection of a Gaussian beam at a nonlinear interface. Appl. Opt. 21, 2041–2051 (1982).

    Article  ADS  Google Scholar 

  7. Aceves, A. B., Moloney, J. V. & Newell, A. C. Reflection and transmission of self-focused channels at nonlinear dielectric interfaces. Opt. Lett. 13, 1002–1004 (1988).

    Article  ADS  Google Scholar 

  8. Aceves, A. B., Moloney, J. V. & Newell, A. C. Theory of light-beam propagation at nonlinear interfaces. I. Equivalent-particle theory for a single interface. Phys. Rev. A 39, 1809–1827 (1989).

    Article  ADS  Google Scholar 

  9. Alvarado-Méndez, E. et al. Total internal reflection of spatial solitons at interface formed by a nonlinear saturable and a linear medium. Opt. Commun. 193, 267–276 (2001).

    Article  ADS  Google Scholar 

  10. Kartashov, Y., Vysloukh, V. & Torner, L. Bragg-type soliton mirror. Opt. Express 14, 1576–1581 (2006).

    Article  ADS  Google Scholar 

  11. Clausen, C. B. & Torner, L. Spatial switching of quadratic solitons in engineered quasi-phase-matched structures. Opt. Lett. 24, 7–9 (1999).

    Article  ADS  Google Scholar 

  12. Jankovic, L. et al. Quadratic soliton self-reflection at a quadratically nonlinear interface. Opt. Lett. 28, 2103–2105 (2003).

    Article  ADS  Google Scholar 

  13. Baronio, F., De Angelis, C., Pioger, P. H., Couderc, V. & Barthélémy, A. Reflection of quadratic solitons at the boundary of nonlinear media. Opt. Lett. 29, 986–988 (2004).

    Article  ADS  Google Scholar 

  14. Friedrich, L., Stegeman, G. I., Millar, P., Hamilton, C. J. & Aitchison, J. S. Dynamic, electronically controlled angle steering of spatial solitons in AlGaAs slab waveguides. Opt. Lett. 23, 1438–1440 (1998).

    Article  ADS  Google Scholar 

  15. Jäger, R., Gorza, S. P., Cambournac, C., Haelterman, M. & Chauvet, M. Sharp waveguide bends induced by spatial solitons. Appl. Phys. Lett. 88, 061117 (2006).

    Article  ADS  Google Scholar 

  16. De Gennes, P. G. & Prost, J. The Physics of Liquid Crystals 2nd edn (Oxford Univ. Press, London, 1993).

    Google Scholar 

  17. Khoo, I. C. Liquid Crystals: Physical Properties and Nonlinear Optical Phenomena (Wiley, New York, 1995).

    Google Scholar 

  18. Assanto, G., Peccianti, M. & Conti, C. Nematicons: Optical spatial solitons in nematic liquid crystals. Opt. Photon. News 14, 44–48 (2003).

    Article  ADS  Google Scholar 

  19. Bang, O., Krolikowski, W., Wyller, W. & Rasmussen, J. J. Collapse arrest and soliton stabilization in nonlocal nonlinear media. Phys. Rev. E 66, 046619 (2002).

    Article  ADS  MathSciNet  Google Scholar 

  20. Conti, C., Peccianti, M. & Assanto, G. Observation of optical spatial solitons in a highly nonlocal medium. Phys. Rev. Lett. 92, 113902 (2004).

    Article  ADS  Google Scholar 

  21. Peccianti, M., Conti, C., Assanto, G., De Luca, A. & Umeton, C. Routing of anisotropic spatial solitons and modulational instability in liquid crystals. Nature 432, 733–737 (2004).

    Article  ADS  Google Scholar 

  22. Peccianti, M., Fratalocchi, A. & Assanto, G. Transverse dynamics of nematicons. Opt. Express 12, 6524–6529 (2004).

    Article  ADS  Google Scholar 

  23. Peccianti, M., Conti, C. & Assanto, G. Interplay between nonlocality and nonlinearity in nematic liquid crystals. Opt. Lett. 30, 415–417 (2005).

    Article  ADS  Google Scholar 

  24. Tamir, T. & Bertoni, H. L. Lateral displacement of optical beams in multilayered and periodic structures. J. Opt. Soc. Am. 61, 1397–1413 (1971).

    Article  ADS  Google Scholar 

  25. Emile, O., Galstyan, T., Le Floch, A. & Bretenaker, F. Measurement of the nonlinear Goos-Hänchen effect for Gaussian optical beams. Phys. Rev. Lett. 75, 1511–1514 (1995).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

G.A. thanks S. Trillo and A. Snyder for useful discussions. This work was financially supported in part by the Italian Ministry for University and Research (PRIN 2005098337).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Marco Peccianti or Gaetano Assanto.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peccianti, M., Dyadyusha, A., Kaczmarek, M. et al. Tunable refraction and reflection of self-confined light beams. Nature Phys 2, 737–742 (2006). https://doi.org/10.1038/nphys427

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nphys427

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing