Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Tunable Klein-like tunnelling of high-temperature superconducting pairs into graphene

Abstract

Superconductivity can be induced in a normal material via the ‘leakage’ of superconducting pairs of charge carriers from an adjacent superconductor. This so-called proximity effect is markedly influenced by graphene’s unique electronic structure, both in fundamental and technologically relevant ways. These include an unconventional form1,2 of the ‘leakage’ mechanism—the Andreev reflection3—and the potential of supercurrent modulation through electrical gating4. Despite the interest of high-temperature superconductors in that context5,6, realizations have been exclusively based on low-temperature ones. Here we demonstrate a gate-tunable, high-temperature superconducting proximity effect in graphene. Notably, gating effects result from the perfect transmission of superconducting pairs across an energy barrier—a form of Klein tunnelling7,8, up to now observed only for non-superconducting carriers9,10—and quantum interferences controlled by graphene doping. Interestingly, we find that this type of interference becomes dominant without the need of ultraclean graphene, in stark contrast to the case of low-temperature superconductors11. These results pave the way to a new class of tunable, high-temperature Josephson devices based on large-scale graphene.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Sample fabrication steps.
Figure 2: Temperature and gate-voltage dependent conductance.
Figure 3: Gate-voltage effects: experiment and simulations.

Similar content being viewed by others

References

  1. Beenakker, C. W. J. Specular Andreev reflection in graphene. Phys. Rev. Lett. 97, 67007 (2006).

    Article  ADS  Google Scholar 

  2. Efetov, D. K. et al. Specular interband Andreev reflections at van der Waals interfaces between graphene and NbSe2 . Nat. Phys. 12, 328–332 (2015).

    Article  Google Scholar 

  3. Andreev, A. F. The thermal conductivity of the intermediate state in superconductors. Sov. Phys. JETP 19, 1228–1231 (1964).

    Google Scholar 

  4. Heersche, H. B., Jarillo-Herrero, P., Oostinga, J. B., Vandersypen, L. M. K. & Morpurgo, A. F. Bipolar supercurrent in graphene. Nature 446, 56–59 (2007).

    Article  ADS  Google Scholar 

  5. Linder, J. & Sudbø, A. Dirac fermions and conductance oscillations in s- and d-wave superconductor-graphene junctions. Phys. Rev. Lett. 99, 147001 (2007).

    Article  ADS  Google Scholar 

  6. Linder, J. & Sudbø, A. Tunneling conductance in s- and d-wave superconductor-graphene junctions: extended Blonder–Tinkham–Klapwijk formalism. Phys. Rev. B 77, 64507 (2008).

    Article  ADS  Google Scholar 

  7. Katsnelson, M., Novoselov, K. & Geim, A. Chiral tunnelling and the Klein paradox in graphene. Nat. Phys. 2, 620–625 (2006).

    Article  Google Scholar 

  8. Beenakker, C. W. J. Colloquium: Andreev reflection and Klein tunneling in graphene. Rev. Mod. Phys. 80, 1337–1354 (2008).

    Article  ADS  Google Scholar 

  9. Huard, B. et al. Transport measurements across a tunable potential barrier in graphene. Phys. Rev. Lett. 98, 236803 (2007).

    Article  ADS  Google Scholar 

  10. Young, A. F. & Kim, P. Quantum interference and Klein tunnelling in graphene heterojunctions. Nat. Phys. 5, 222–226 (2009).

    Article  Google Scholar 

  11. Ben Shalom, M. et al. Quantum oscillations of the critical current and high-field superconducting proximity in ballistic graphene. Nat. Phys. 12, 318–322 (2015).

    Article  Google Scholar 

  12. Klapwijk, T. M. Proximity effect from an Andreev perspective. J. Supercond. 17, 593–611 (2004).

    Article  ADS  Google Scholar 

  13. Du, X., Skachko, I. & Andrei, E. Y. Josephson current and multiple Andreev reflections in graphene SNS junctions. Phys. Rev. B 77, 184507 (2008).

    Article  ADS  Google Scholar 

  14. Ojeda-Aristizabal, C., Ferrier, M., Guéron, S. & Bouchiat, H. Tuning the proximity effect in a superconductor–graphene–superconductor junction. Phys. Rev. B 79, 165436 (2009).

    Article  ADS  Google Scholar 

  15. Girit, Ç. et al. Tunable graphene dc superconducting quantum interference device. Nano Lett. 9, 198–199 (2009).

    Article  ADS  Google Scholar 

  16. Komatsu, K., Li, C., Autier-Laurent, S., Bouchiat, H. & Guéron, S. Superconducting proximity effect in long superconductor/graphene/superconductor junctions: from specular Andreev reflection at zero field to the quantum Hall regime. Phys. Rev. B 86, 115412 (2012).

    Article  ADS  Google Scholar 

  17. Sun, Q. J. et al. Electronic transport transition at graphene/YBa2Cu3O7-δ junction. Appl. Phys. Lett. 104, 102602 (2014).

    Article  ADS  Google Scholar 

  18. Rickhaus, P., Weiss, M., Marot, L. & Schönenberger, C. Quantum Hall effect in graphene with superconducting electrodes. Nano Lett. 12, 1942–1945 (2012).

    Article  ADS  Google Scholar 

  19. Deon, F., Šopić, S. & Morpurgo, A. F. Tuning the influence of microscopic decoherence on the superconducting proximity effect in a graphene Andreev interferometer. Phys. Rev. Lett. 112, 126803 (2013).

    Article  ADS  Google Scholar 

  20. Allen, M. T. et al. Spatially resolved edge currents and guided-wave electronic states in graphene. Nat. Phys. 12, 128–133 (2016).

    Article  Google Scholar 

  21. Wei, J. Y. T., Yeh, N.-C., Garrigus, D. F. & Strasik, M. Directional tunneling and Andreev reflection on YBa2Cu3O7−δ single crystals: predominance of d-wave pairing symmetry verified with the generalized Blonder, Tinkham, and Klapwijk theory. Phys. Rev. Lett. 81, 2542–2545 (1998).

    Article  ADS  Google Scholar 

  22. Blonder, G. E., Tinkham, M. & Klapwijk, T. M. Transition from metallic to tunneling regimes in superconducting micro-constrictions—excess current, charge imbalance, and super-current conversion. Phys. Rev. B 25, 4515–4532 (1982).

    Article  ADS  Google Scholar 

  23. Kashiwaya, S., Tanaka, Y., Koyanagi, M., Takashima, H. & Kajimura, K. Origin of zero-bias conductance peaks in high-Tc superconductors. Phys. Rev. B 51, 1350–1353 (1995).

    Article  ADS  Google Scholar 

  24. Crassous, A. et al. Nanoscale electrostatic manipulation of magnetic flux quanta in ferroelectric/superconductor BiFeO3/YBa2Cu3O7−δ heterostructures. Phys. Rev. Lett. 107, 247002 (2011).

    Article  ADS  Google Scholar 

  25. Bhattacharjee, S. & Sengupta, K. Tunneling conductance of graphene NIS junctions. Phys. Rev. Lett. 97, 217001 (2006).

    Article  ADS  Google Scholar 

  26. Linder, J., Black-Schaffer, A. M., Yokoyama, T., Doniach, S. & Sudbø, A. Josephson current in graphene: role of unconventional pairing symmetries. Phys. Rev. B 80, 94522 (2009).

    Article  ADS  Google Scholar 

  27. Cedergren, K. et al. Interplay between static and dynamic properties of semifluxons in YBa2Cu3O7−δ 0-π Josephson junctions. Phys. Rev. Lett. 104, 177003 (2010).

    Article  ADS  Google Scholar 

  28. Bernard, A. Di et al. p-wave triggered superconductivity in single-layer graphene on an electron-doped oxide superconductor. Nat. Commun. 8, 14024 (2017).

    Article  ADS  Google Scholar 

  29. Kidambi, P. R. et al. The parameter space of graphene CVD on polycrystalline Cu. J. Phys. Chem. C 116, 22492–22501 (2012).

    Article  Google Scholar 

Download references

Acknowledgements

Work at CNRS/Thales was supported by the French National Research Agency through ‘Investissements d’Avenir’ program Labex NanoSaclay (ANR-10-LABX-0035) and by the EU Work Programme under Grant Graphene Flagship (No. 604391) and Core1 (No. 696656). R.G. acknowledges funding from the Marie-Curie-ITN 607904-SPINOGRAPH. S.H. acknowledges funding from EPSRC grants EP/K016636/1 and EP/P005152/1. P.S. acknowledges the Institut Universitaire de France for a junior fellowship. We thank A. S. Mel’Nikov, J. Linder, J. Santamaría, S. Gueron and H. Bouchiat for useful discussions. We thank Y. Le Gall for assistance during ion irradiation.

Author information

Authors and Affiliations

Authors

Contributions

J.E.V. and P.S. conceived the experiments. R.B. fabricated the YBCO films. P.R.K., M.-B.M. and S.H. fabricated the graphene sheets. F.A.C., fabricated the devices, with contributions from D.P., B.D., R.G. and M.P.-B. F.A.C. performed transport experiments, with contributions of D.P. and C.M.-L. D.P. performed numerical simulations. The figures were prepared and the paper written by D.P., F.A.C. and J.E.V., with contributions from all the other authors. All of the authors participated in the discussion of the results.

Corresponding authors

Correspondence to Pierre Seneor or Javier E. Villegas.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1722 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Perconte, D., Cuellar, F., Moreau-Luchaire, C. et al. Tunable Klein-like tunnelling of high-temperature superconducting pairs into graphene. Nature Phys 14, 25–29 (2018). https://doi.org/10.1038/nphys4278

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nphys4278

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing