Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Sign reversal of the order parameter in (Li1−xFex)OHFe1−yZnySe

Abstract

Iron pnictides are the only known family of unconventional high-temperature superconductors besides cuprates. Until recently, it was widely accepted that superconductivity is driven by spin fluctuations and intimately related to the fermiology, specifically, hole and electron pockets separated by the same wavevector that characterizes the dominant spin fluctuations, and supporting order parameters (OP) of opposite signs1,2. This picture was questioned after the discovery of intercalated or monolayer form of FeSe-based systems without hole pockets, which seemingly undermines the basis for spin-fluctuation theory and the idea of a sign-changing OP3,4,5,6,7,8,9,10,11. Using the recently proposed phase-sensitive quasiparticle interference technique, here we show that in LiOH-intercalated FeSe compound the OP does change sign, albeit within the electronic pockets. This result unifies the pairing mechanism of iron-based superconductors with or without the hole Fermi pockets and supports the conclusion that spin fluctuations play the key role in electron pairing.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: In-gap resonant states of a non-magnetic impurity.
Figure 2: Quasiparticle interference around the single impurity.
Figure 3: Determination of sign reversal of the superconducting order parameter.

Similar content being viewed by others

References

  1. Mazin, I. I., Singh, D. J., Johannes, M. D. & Du, M. H. Unconventional superconductivity with a sign reversal in the order parameter of LaFeAsO1−xFx . Phys. Rev. Lett. 101, 057003 (2008).

    Article  ADS  Google Scholar 

  2. Kuroki, K. et al. Unconventional pairing originating from the disconnected Fermi surfaces of superconducting LaFeAsO1−xFx . Phys. Rev. Lett. 101, 087004 (2008).

    Article  ADS  Google Scholar 

  3. Guo, J. G. et al. Superconductivity in the iron selenide KxFe2Se2 (0 < x < 1.0). Phys. Rev. B 82, 180520 (2010).

    Article  ADS  Google Scholar 

  4. Fang, M. H. et al. Fe-based superconductivity with Tc = 31 K bordering an antiferromagnetic insulator in (TI, K)FexSe2 . Europhys. Lett. 94, 27009 (2011).

    Article  ADS  Google Scholar 

  5. Hirschfeld, P. J., Korshunov, M. M. & Mazin, I. I. Gap symmetry and structure of Fe-based superconductors. Rep. Prog. Phys. 74, 124508 (2011).

    Article  ADS  Google Scholar 

  6. Lu, X. F. et al. Coexistence of superconductivity and antiferromagnetism in (Li0.8Fe0.2)OHFeSe. Nat. Mater. 14, 325–329 (2015).

    Article  ADS  Google Scholar 

  7. Pachmayr, U. et al. Coexistence of 3d-ferromagnetism and superconductivity in [(Li1−xFex)OH](Fe1−yLiy)Se. Angew. Chem. Int. Ed. 54, 293–297 (2015).

    Article  Google Scholar 

  8. Wang, Q. Y. et al. Interface-induced high-temperature superconductivity in single unit-cell FeSe films on SrTiO3 . Chin. Phys. Lett. 29, 037402 (2012).

    Article  ADS  Google Scholar 

  9. Miyata, Y., Nakayama, K., Sugawara, K., Sato, T. & Takahashi, T. High-temperature superconductivity in potassium-coated multilayer FeSe thin films. Nat. Mater. 14, 775–779 (2015).

    Article  ADS  Google Scholar 

  10. Niu, X. H. et al. Surface electronic structure and isotropic superconducting gap in (Li0.8Fe0.2)OHFeSe. Phys. Rev. B 92, 060504 (2015).

    Article  ADS  Google Scholar 

  11. Zhao, L. et al. Common electronic origin of superconductivity in (Li, Fe)OHFeSe bulk superconductor and single-layer FeSe/SrTiO3 films. Nat. Commun. 7, 10608 (2016).

    Article  ADS  Google Scholar 

  12. Ding, X. X. et al. Influence of microstructure on superconductivity in KxFe2−ySe2 and evidence for a new parent phase K2Fe7Se8 . Nat. Commun. 4, 1897 (2013).

    Article  ADS  Google Scholar 

  13. Mazin, I. I. Iron superconductivity weathers another storm. Physics 4, 26 (2011).

    Article  Google Scholar 

  14. Maier, T. A., Graser, S., Hirschfeld, P. J. & Scalapino, D. J. d-wave pairing from spin fluctuations in the KFe2Se2 superconductors. Phys. Rev. B 83, 100515 (2011).

    Article  ADS  Google Scholar 

  15. Wang, F. et al. The electron pairing of KxFe2−ySe2 . Europhys. Lett. 93, 57003 (2011).

    Article  ADS  Google Scholar 

  16. Mazin, I. I. Symmetry analysis of possible superconducting states in KxFeySe2 superconductors. Phys. Rev. B 84, 024529 (2011).

    Article  ADS  Google Scholar 

  17. Mu, X. et al. Evidence for an s-wave superconducting gap in KxFe2−ySe2 from angle-resolved photoemission. Phys. Rev. B 85, 220504 (2012).

    Article  Google Scholar 

  18. Zhao, L. et al. Common Fermi-surface topology and nodeless superconducting gap of K0.68Fe1.79Se2 and (Tl0.45K0.34)Fe1.84Se2 superconductors revealed via angle-resolved photoemission. Phys. Rev. B 83, 140508 (2011).

    Article  ADS  Google Scholar 

  19. Khodas, M. & Chubukov, A. V. Interpocket pairing and gap symmetry in Fe-based superconductors with only electron pockets. Phys. Rev. Lett. 108, 247003 (2012).

    Article  ADS  Google Scholar 

  20. Onari, S. & Kontani, H. Self-consistent vertex correction analysis for iron-based superconductors: mechanism of Coulomb interaction-driven orbital fluctuations. Phys. Rev. Lett. 109, 137001 (2012).

    Article  ADS  Google Scholar 

  21. Golubov, A. A. & Mazin, I. I. Designing phase-sensitive tests for Fe-based superconductors. Appl. Phys. Lett. 102, 032601 (2013).

    Article  ADS  Google Scholar 

  22. Parker, D. & Mazin, I. I. Possible phase-sensitive tests of pairing symmetry in pnictide superconductors. Phys. Rev. Lett. 102, 227007 (2009).

    Article  ADS  Google Scholar 

  23. Hanaguri, T., Niitaka, S., Kuroki, K. & Takagi, H. Unconventional s-wave superconductivity in Fe(Se, Te). Science 328, 474–476 (2010).

    Article  ADS  Google Scholar 

  24. Hirschfeld, P. J., Altenfeld, D., Eremin, I. & Mazin, I. I. Robust determination of superconducting gap sign changes via quasiparticle interference. Phys. Rev. B 92, 184513 (2015).

    Article  ADS  Google Scholar 

  25. Yang, H. et al. In-gap quasiparticle excitations induced by non-magnetic Cu impurities in Na(Fe0.96Co0.03Cu0.01)As revealed by scanning tunnelling spectroscopy. Nat. Commun. 4, 2749 (2013).

    Article  ADS  Google Scholar 

  26. Du, Z. Y. et al. Scrutinizing the double superconducting gaps and strong coupling pairing in (Li1−xFex)OHFeSe. Nat. Commun. 7, 10565 (2016).

    Article  ADS  Google Scholar 

  27. Balatsky, A. V., Vekhter, I. & Zhu, J.-X. Impurity-induced states in conventional and unconventional superconductors. Rev. Mod. Phys. 78, 373–433 (2006).

    Article  ADS  Google Scholar 

  28. Kariyado, T. & Ogata, M. Single impurity problem in iron-pnictide superconductors. J. Phys. Soc. Jpn. 79, 083704 (2010).

    Article  ADS  Google Scholar 

  29. Bang, Y., Choi, H. Y. & Won, H. Impurity effects on the ± s-wave state of the iron-based superconductors. Phys. Rev. B 79, 054529 (2009).

    Article  ADS  Google Scholar 

  30. Beaird, R., Vekhter, I. & Zhu, J. X. Impurity states in multiband s-wave superconductors: analysis of iron pnictides. Phys. Rev. B 86, 140507 (2012).

    Article  ADS  Google Scholar 

  31. Yan, Y. J. et al. Surface electronic structure and evidence of plain s-wave superconductivity in (Li0.8Fe0.2)OHFeSe. Phys. Rev. B 94, 134502 (2016).

    Article  ADS  Google Scholar 

  32. Sprau, P. O. et al. Discovery of orbital-selective Cooper pairing in FeSe. Science 357, 75–80 (2017).

    Article  ADS  Google Scholar 

  33. Davies, N. R. et al. Spin resonance in the superconducting state of Li1−xFexODFe1−ySe observed by neutron spectroscopy. Phys. Rev. B 94, 144503 (2016).

    Article  ADS  Google Scholar 

  34. Pan, B. Y. et al. Structure of spin excitations in heavily electron-doped Li0.8Fe0.2ODFeSe superconductors. Nat. Commun. 8, 123 (2017).

    Article  ADS  Google Scholar 

  35. Park, J. T. et al. Magnetic resonant mode in the low-energy spin-excitation spectrum of superconducting Rb2Fe4Se5 single crystals. Phys. Rev. Lett. 107, 177005 (2011).

    Article  ADS  Google Scholar 

  36. Huang, D. & Hoffman, J. E. Monolayer FeSe on SrTiO3 . Annu. Rev. Condens. Matter Phys. 8, 311–336 (2017).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We acknowledge the useful discussions with G. Kotliar, P. Coleman, D.-H. Lee and J. Zhao. The work in NJU was supported by National Key R&D Program of China (grant number: 2016YFA0300400), National Natural Science Foundation of China (NSFC) with the projects: A0402/11534005, A0402/11190023, A0402/11374144 and Natural Science Foundation of Jiangsu (grant number: BK20140015). P.J.H. was supported by NSF-DMR-1407502. I.I.M. was supported by ONR through the NRL Basic Research Program. D.A. and I.E. were supported by the joint DFG-ANR Project (ER 463/8-1) and DAAD PPP USA N57316180.

Author information

Authors and Affiliations

Authors

Contributions

The low-temperature STS measurements were performed by Z.D., X.Y., Q.G. and H.Y. Data analysis was done by Z.D., X.Y., Q.G., H.Y. and H.-H.W. The samples were grown by H.L. and X.Y.Z. The theoretical calculations were done by D.A. and I.E. All authors contributed to the writing of the paper, with P.H., I.I.M. and H.-H.W. responsible for the final text. H.-H.W. coordinated the whole work. All authors have discussed the results and the interpretations.

Corresponding authors

Correspondence to Peter J. Hirschfeld or Hai-Hu Wen.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1204 kb)

Supplementary Movie

Supplementary Movie 1 (AVI 1248 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Du, Z., Yang, X., Altenfeld, D. et al. Sign reversal of the order parameter in (Li1−xFex)OHFe1−yZnySe. Nat. Phys. 14, 134–139 (2018). https://doi.org/10.1038/nphys4299

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nphys4299

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing