Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Anomalous dispersion of microcavity trion-polaritons

Abstract

The strong coupling of excitons to optical cavities has provided new insights into cavity quantum electrodynamics as well as opportunities to engineer nanoscale light–matter interactions1,2,3,4,5,6. Here we study the interaction between out-of-equilibrium cavity photons and both neutral and negatively charged excitons, by embedding a single layer of the atomically thin semiconductor molybdenum diselenide in a monolithic optical cavity based on distributed Bragg reflectors. The interactions lead to multiple cavity polariton resonances and anomalous band inversion for the lower, trion-derived, polariton branch—the central result of the present work. Our theoretical analysis reveals that many-body effects in an out-of-equilibrium setting result in an effective level attraction between the exciton-polariton and trion-polariton accounting for the experimentally observed inverted trion-polariton dispersion. Our results suggest a pathway for studying interesting regimes in quantum many-body physics yielding possible new phases of quantum matter7,8,9,10,11 as well as fresh possibilities for polaritonic device architectures12,13,14,15.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Device architecture and cavity polariton physics.
Figure 2: Optical characterization of the cavity, MoSe2 flake and the polariton device.
Figure 3: Measuring the device dispersion relation.
Figure 4: Temperature dependence of the interactions.

Similar content being viewed by others

References

  1. Kavokin, A. V., Baumberg, J. J., Malpuech, G. & Laussy, F. P. Microcavities (Oxford Science Publication, 2007).

    Book  Google Scholar 

  2. Gibbs, H. M., Khitrova, G. & Koch, S. W. Exciton-polariton light-semiconductor coupling effects. Nat. Photon. 5, 273 (2011).

    Article  ADS  Google Scholar 

  3. Weisbuch, C., Nishioka, M., Ishikawa, A. & Arakawa, Y. Observation of the coupled exciton-photon mode splitting in a semiconductor quantum microcavity. Phys. Rev. Lett. 69, 3314–3317 (1992).

    Article  ADS  Google Scholar 

  4. Pau, S., Björk, G., Jacobson, J., Cao, H. & Yamamoto, Y. Microcavity exciton-polariton splitting in the linear regime. Phys. Rev. B 51, 14437–14447 (1995).

    Article  ADS  Google Scholar 

  5. Lidzey, D. G. et al. Strong exciton–photon coupling in an organic semiconductor microcavity. Nature 395, 53–55 (1998).

    Article  ADS  Google Scholar 

  6. Hennessy, K. et al. Quantum nature of a strongly coupled single quantum dot–cavity system. Nature 445, 896–899 (2007).

    Article  ADS  Google Scholar 

  7. Balili, R., Hartwell, V., Snoke, D., Pfeiffer, L. & West, K. Bose–Einstein condensation of microcavity polaritons in a trap. Science 316, 1007–1010 (2007).

    Article  ADS  Google Scholar 

  8. Deng, H., Haug, H. & Yamamoto, Y. Exciton-polariton Bose–Einstein condensation. Rev. Mod. Phys. 82, 1489–1537 (2010).

    Article  ADS  Google Scholar 

  9. Plumhof, J. D., Stöferle, T., Mai, L., Scherf, U. & Mahrt, R. F. Room-temperature Bose–Einstein condensation of cavity exciton-polaritons in a polymer. Nat. Mater. 13, 247–252 (2013).

    Article  ADS  Google Scholar 

  10. Byrnes, T., Kim, N. Y. & Yamamoto, Y. Exciton-polariton condensates. Nat. Phys. 10, 803–813 (2014).

    Article  Google Scholar 

  11. Smolka, S. et al. Cavity quantum electrodynamics with many-body states of a two-dimensional electron gas. Science 346, 332–335 (2014).

    Article  ADS  Google Scholar 

  12. Deng, H., Weihs, G., Snoke, D., Bloch, J. & Yamamoto, Y. Polariton lasing vs. photon lasing in a semiconductor microcavity. Proc. Natl Acad. Sci. USA 100, 15318–15323 (2003).

    Article  ADS  Google Scholar 

  13. Tsintzos, S. I., Pelekanos, N. T., Konstantinidis, G., Hatzopoulos, Z. & Savvidis, P. G. A GaAs polariton light-emitting diode operating near room temperature. Nature 453, 372–375 (2008).

    Article  ADS  Google Scholar 

  14. Ballarini, D. et al. All-optical polariton transistor. Nat. Commun. 4, 1778 (2013).

    Article  ADS  Google Scholar 

  15. Cerna, R. et al. Ultrafast tristable spin memory of a coherent polariton gas. Nat. Commun. 4, 2008 (2013).

    Article  ADS  Google Scholar 

  16. Savvidis, P. G. et al. Angle-resonant stimulated polariton amplifier. Phys. Rev. Lett. 84, 1547–1550 (2000).

    Article  ADS  Google Scholar 

  17. Kéna-Cohen, S. & Forrest, S. R. Room-temperature polariton lasing in an organic single-crystal microcavity. Nat. Photon. 4, 371–375 (2010).

    Article  ADS  Google Scholar 

  18. Das, A. et al. Room temperature ultralow threshold GaN nanowire polariton laser. Phys. Rev. Lett. 107, 066405 (2011).

    Article  ADS  Google Scholar 

  19. Schneider, C. et al. An electrically pumped polariton laser. Nature 497, 348–352 (2013).

    Article  ADS  Google Scholar 

  20. Rapaport, R., Cohen, E., Ron, A., Linder, E. & Pfeiffer, L. N. Negatively charged polaritons in a semiconductor microcavity. Phys. Rev. B 63, 235310 (2001).

    Article  ADS  Google Scholar 

  21. Flatten, L. C. et al. Strong exciton–photon coupling with colloidal nanoplatelets in an open microcavity. Nano Lett. 16, 7137–7141 (2016).

    Article  ADS  Google Scholar 

  22. Wang, Q. H., Kalantar-Zadeh, K., Kis, A., Coleman, J. N. & Strano, M. S. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotech. 7, 699–712 (2012).

    Article  ADS  Google Scholar 

  23. Mak, K. F. et al. Tightly bound trions in monolayer MoS2 . Nat. Mater. 12, 207–211 (2012).

    Article  ADS  Google Scholar 

  24. Chakraborty, C., Kinnischtzke, L., Goodfellow, K. M., Beams, R. & Vamivakas, A. N. Voltage-controlled quantum light from an atomically thin semiconductor. Nat. Nanotech. 10, 507–511 (2015).

    Article  ADS  Google Scholar 

  25. Ramasubramaniam, A. Large excitonic effects in monolayers of molybdenum and tungsten dichalcogenides. Phys. Rev. B 86, 115409 (2012).

    Article  ADS  Google Scholar 

  26. Ugeda, M. M. et al. Giant bandgap renormalization and excitonic effects in a monolayer transition metal dichalcogenide semiconductor. Nat. Mater. 13, 1091–1095 (2014).

    Article  ADS  Google Scholar 

  27. Liu, X. et al. Strong light–matter coupling in two-dimensional atomic crystals. Nat. Photon. 9, 30–34 (2014).

    Article  ADS  Google Scholar 

  28. Dufferwiel, S. et al. Exciton-polaritons in van der Waals heterostructures embedded in tunable microcavities. Nat. Commun. 6, 8579 (2015).

    Article  ADS  Google Scholar 

  29. Sidler, M. et al. Fermi polaron-polaritons in charge-tunable atomically thin semiconductors. Nat. Phys. 13, 255–261 (2016).

    Article  Google Scholar 

  30. Sich, M. et al. Observation of bright polariton solitons in a semiconductor microcavity. Nat. Photon. 6, 50–55 (2011).

    Article  ADS  Google Scholar 

  31. Ross, J. S. et al. Electrical control of neutral and charged excitons in a monolayer semiconductor. Nat. Commun. 4, 1474 (2013).

    Article  ADS  Google Scholar 

  32. Lundt, N. et al. Valley polarized relaxation and upconversion luminescence from Tamm-plasmon trion-polaritons with a MoSe2 monolayer. 2D Mater. 4, 025096 (2017).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by NSF EFRI EFMA-1542707, NSF CAREER DMR 1553788, AFOSR FA9550-16-1-0020 and the University of Rochester University Research Award and the Leonard Mandel Faculty Fellowship in Quantum Optics. S.D. also acknowledges support from a Ramanujan Fellowship research grant, SERB, and ISIRD project SRIC, IIT Kharagpur. S.B. acknowledges the Max-Planck-Gesellschaft for funding though MPI partner group at ICTS.

Author information

Authors and Affiliations

Authors

Contributions

S.D., C.C., K.M.G., T.A.O’L., G.W.W. and A.N.V. conceived the research. S.D., C.C., T.A.O’L. and K.M.G. fabricated the samples. S.D., C.C. and L.Q. conducted the measurements. S.D., C.C., S.B. and A.N.V. devised the theoretical model. All authors discussed the data and wrote the manuscript.

Corresponding author

Correspondence to A. N. Vamivakas.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 423 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dhara, S., Chakraborty, C., Goodfellow, K. et al. Anomalous dispersion of microcavity trion-polaritons. Nat. Phys. 14, 130–133 (2018). https://doi.org/10.1038/nphys4303

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nphys4303

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing