Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Electrical detection of coherent 31P spin quantum states

Abstract

In recent years, a variety of solid-state qubits has been realized, including quantum dots1,2, superconducting tunnel junctions3,4 and point defects5,6. Owing to its potential compatibility with existing microelectronics, the proposal by Kane7,8—on the basis of phosphorus donors in silicon—has been pursued intensively9,10,11. A key issue of this concept is the readout of the 31P quantum state. Electrical measurements of magnetic resonance have been carried out on single spins12,13, but the statistical nature of these experiments based on random-telegraph-noise measurements has impeded the readout of single spin states. Here, we demonstrate the measurement of the spin state of 31P donor electrons in silicon and the observation of Rabi flops by purely electric means, that is by coherent manipulation of spin-dependent charge-carrier recombination between the 31P donor and paramagnetic localized states at the Si/SiO2 interface. The electron spin information is shown to be coupled through the hyperfine interaction to the 31P nucleus, suggesting that recombination-based readout of nuclear spins is feasible.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Readout scheme for 31P electron spin quantum states via spin-dependent charge-carrier recombination at Pb0 centres at the crystalline Si/SiO2 interface.
Figure 2: Pulsed electrically detected magnetic resonance of 31P–Pb0 pairs.
Figure 3: Electrical observation of Rabi flops of 31P electron spins.
Figure 4: Detuning-induced shift of the Rabi nutation frequency.

Similar content being viewed by others

References

  1. Elzerman, J. M. et al. Single-shot read-out of an individual electron spin in a quantum dot. Nature 430, 431–435 (2004).

    Article  ADS  Google Scholar 

  2. Petta, J. R. et al. Coherent manipulation of coupled electron spins in semiconductor quantum dots. Science 309, 2180–2184 (2005).

    Article  ADS  Google Scholar 

  3. Mooij, J. E. et al. Josephson persistent-current qubit. Science 285, 1036–1039 (1999).

    Article  Google Scholar 

  4. Pashkin, Y. A. et al. Quantum oscillations in two coupled charge qubits. Nature 421, 823–826 (2003).

    Article  ADS  Google Scholar 

  5. Kennedy, T. et al. Single-qubit operations with the nitrogen-vacancy center in diamond. Phys. Status Solidi B 233, 416–426 (2002).

    Article  ADS  Google Scholar 

  6. Jelezko, F. et al. Observation of coherent oscillation of a single nuclear spin and realization of a two-qubit conditional quantum gate. Phys. Rev. Lett. 93, 130501 (2004).

    Article  ADS  Google Scholar 

  7. Kane, B. E. A silicon-based nuclear spin quantum computer. Nature 393, 133–137 (1998).

    Article  ADS  Google Scholar 

  8. Kane, B. E. Silicon-based quantum computation. Fort. Phys. 48, 1023–1041 (2000).

    Article  Google Scholar 

  9. Vrijen, R. et al. Electron-spin-resonance transistors for quantum computing in silicon-germanium heterostructures. Phys. Rev. A 62, 012306 (2000).

    Article  ADS  Google Scholar 

  10. Hollenberg, L. C. L. et al. Charge-based quantum computing using single donors in semiconductors. Phys. Rev. B 69, 113301 (2004).

    Article  ADS  Google Scholar 

  11. Clark, R. G. et al. Progress in silicon-based quantum computing. Phil. Trans. R. Soc. Lond. A 361, 1451–1471 (2003).

    Article  ADS  MathSciNet  Google Scholar 

  12. Xiao, M., Martin, I., Yablonovitch, E. & Jiang, H. W. Electrical detection of the spin resonance of a single electron in a silicon field-effect transistor. Nature 430, 435–439 (2004).

    Article  ADS  Google Scholar 

  13. Brandt, M. S. et al. Spin-dependent transport in elemental and compound semiconductors and nanostructures. Phys. Status Solidi C 1, 2056–2078 (2004).

    Article  ADS  Google Scholar 

  14. Boehme, C. & Lips, K. Spin-dependent recombination—an electronic readout mechanism for solid state quantum computers. Phys. Status Solidi B 233, 427–435 (2002).

    Article  ADS  Google Scholar 

  15. Schmidt, J. & Solomon, I. Modulation de la photoconductivité dans le silicium à basse température par résonance magnétique électronique des impuretés peu profondes. C.R. Acad. Sci. B 263, 169–172 (1966).

    Google Scholar 

  16. Boehme, C. & Lips, K. Electrical detection of spin coherence in silicon. Phys. Rev. Lett. 91, 246603 (2003).

    Article  ADS  Google Scholar 

  17. Poindexter, E. H., Caplan, P. J., Deal, B. E. & Razouk, R. R. Interface states and electron spin resonance centers in thermally oxidized (111) and (100) silicon wafers. J. Appl. Phys. 52, 879–884 (1981).

    Article  ADS  Google Scholar 

  18. Stesmans, A. & Afanes’ev, V. V. Electron spin resonance features of interface defects in thermal (100) Si/SiO2 . J. Appl. Phys. 83, 2449–2457 (1998).

    Article  ADS  Google Scholar 

  19. Kaplan, D., Solomon, I. & Mott, N. F. Explanation of the large spin-dependent recombination effect in semiconductors. J. Phys. Lett. (Paris) 39, L51–L54 (1978).

    Article  Google Scholar 

  20. Boehme, C. & Lips, K. Theory of time-domain measurement of spin-dependent recombination with pulsed electrically detected magnetic resonance. Phys. Rev. B 68, 245105 (2003).

    Article  ADS  Google Scholar 

  21. Feher, G. Electron spin resonance experiments on donors in silicon. I. Electronic structure of donors by the electron nuclear double resonance technique. Phys. Rev. 114, 1219–1244 (1959).

    Article  ADS  Google Scholar 

  22. Young, C. F. & Poindexter, E. H. Electron paramagnetic resonance of conduction-band electrons in silicon. Phys. Rev. B 55, 16245–16248 (1997).

    Article  ADS  Google Scholar 

  23. Boehme, C. & Lips, K. The ultrasensitive electrical detection of spin–Rabi oscillation at paramagnetic defects. Physica B 376, 930–935 (2006).

    Article  ADS  Google Scholar 

  24. Rajevac, V. et al. Transport and recombination through weakly coupled localized spin pairs in semiconductors during coherent spin excitation. Phys. Rev. B (in the press); preprint at <http://arxiv.org/abs/cond-mat/0607627> (2006).

  25. Rabi, I. I. Space quantization in a gyrating magnetic field. Phys. Rev. 51, 652–654 (1937).

    Article  ADS  Google Scholar 

  26. Maier, D. C. New frontiers in x-band cw-epr sensitivity. Bruker Rep. 144, 13–15 (1997).

    Google Scholar 

  27. McCamey, D. R. et al. Electrically detected magnetic resonance in ion-implanted Si:P nanostructures. Appl. Phys. Lett. 89, 182115 (2006).

    Article  ADS  Google Scholar 

  28. Machida, T., Yamazaki, T., Ikushima, K. & Komiyama, S. Coherent control of nuclear-spin system in a quantum-Hall device. Appl. Phys. Lett. 82, 409–414 (2003).

    Article  ADS  Google Scholar 

  29. Schenkel, T. et al. Electrical activation and electron spin coherence of ultralow dose antimony implants in silicon. Appl. Phys. Lett. 88, 112101 (2006).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by Deutsche Forschungsgemeinschaft through SFB 631. The sample investigated was grown by G. Vogg and F. Bensch at Fraunhofer IZM in Munich.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Andre R. Stegner or Christoph Boehme.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stegner, A., Boehme, C., Huebl, H. et al. Electrical detection of coherent 31P spin quantum states. Nature Phys 2, 835–838 (2006). https://doi.org/10.1038/nphys465

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nphys465

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing