Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Neutrinos from gamma-ray bursts as a tool to explore quantum-gravity-induced Lorentz violation

Abstract

Lorentz-invariance violation (LIV) arises in various quantum-gravity1,2 theories, but typically at Planck energies that are not accessible on Earth. To test LIV, we must turn to astronomical observations2,3,4,5,6,7,8,9,10,11. Time-of-flight measurements from astronomical sources have set the present limits on the LIV energy scale. According to existing models, gamma-ray bursts (GRBs) are accompanied by very high-energy neutrinos12,13. At these energies, the background level in neutrino detectors such as IceCube (currently under construction in Antarctica) is extremely low. We show that the detection of even a single neutrino from the same direction as a GRB, months after the burst, would be statistically significant and imply that the neutrino was associated with the burst. The detection of several delayed neutrinos from different bursts with compatible relations between their delay times, energies and distances would enable us to generically determine (or set limits on) LIV at levels that cannot be reached by any other method.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: LIV delay periods versus ‘background-free’ intervals.
Figure 2: The examinable ξ1 parameter space.
Figure 3: The examinable ξ2 parameter space.

Similar content being viewed by others

References

  1. Amelino-Camelia, G. Quantum theory’s last challenge. Nature 408, 661–664 (2000).

    Article  ADS  Google Scholar 

  2. Amelino-Camelia, G. et al. Tests of quantum gravity from observations of gamma-ray bursts. Nature 393, 763–765 (1998).

    Article  ADS  Google Scholar 

  3. Ellis, J., Mavromatos, N. E., Nanopoulos, D. V. & Sakharov, A. S. Quantum-gravity analysis of gamma-ray bursts using wavelets. Astron. Astrophys. 402, 409–424 (2003).

    Article  ADS  Google Scholar 

  4. Boggs, S. E., Wunderer, C. B., Hurley, K. & Coburn, W. Testing Lorentz invariance with GRB 021206. Astrophys. J. Lett. 611, L77–L80 (2004).

    Article  ADS  Google Scholar 

  5. Rodríguez Martínez, M., Piran, T. & Oren, Y. GRB 051221A and tests of Lorentz symmetry. J. Cosmol. Astropart. Phys. 05(2006)017 (2006).

  6. Ellis, J. et al. Robust limits on Lorentz violation from gamma-ray bursts. Astropart. Phys. 25, 402–411 (2006).

    Article  ADS  Google Scholar 

  7. Biller, S. D. et al. Limits to quantum gravity effects on energy dependence of the speed of light from observations of TeV flares in active galaxies. Phys. Rev. Lett. 83, 2108–2111 (1999).

    Article  ADS  Google Scholar 

  8. Kaaret, P. Pulsar radiation and quantum gravity. Astron. Astrophys. 345, L32–L34 (1999).

    ADS  Google Scholar 

  9. Jacobson, T., Liberati, S. & Mattingly, D. A strong astrophysical constraint on the violation of special relativity by quantum gravity. Nature 424, 1019–1021 (2003).

    Article  ADS  Google Scholar 

  10. Jacobson, T., Liberati, S., Mattingly, D. & Stecker, F. W. New limits on Planck scale Lorentz violation in QED. Phys. Rev. Lett. 93, 021101 (2004).

    Article  ADS  Google Scholar 

  11. Stecker, F. W. & Scully, S. T. Lorentz invariance violation and the spectrum and source power of ultrahigh energy cosmic rays. Astropart. Phys. 23, 203–209 (2005).

    Article  ADS  Google Scholar 

  12. Waxman, E. & Bahcall, J. High energy neutrinos from cosmological gamma-ray burst fireballs. Phys. Rev. Lett. 78, 2292–2295 (1997).

    Article  ADS  Google Scholar 

  13. Vietri, M. On the energy of neutrinos from gamma-ray bursts. Astrophys. J. 507, 40–45 (1998).

    Article  ADS  Google Scholar 

  14. Gonzalez-Mestres, L. Physics opportunities above the Greisen-Zatsepin-Kuzmin cutoff: Lorentz symmetry violation at the Planck scale. AIP Conf. Proc. 433, 148–158 (1998).

    ADS  Google Scholar 

  15. Coleman, S. & Glashow, S. L. High-energy tests of Lorentz invariance. Phys. Rev. D 59, 116008 (1999).

    Article  ADS  Google Scholar 

  16. Amelino-Camelia, G. & Piran, T. Planck-scale deformation of Lorentz symmetry as a solution to the ultrahigh energy cosmic ray and the TeV-photon paradoxes. Phys. Rev. D 64, 036005 (2001).

    Article  ADS  Google Scholar 

  17. Greisen, K. End to the cosmic-ray spectrum? Phys. Rev. Lett. 16, 748–750 (1966).

    Article  ADS  Google Scholar 

  18. Zatsepin, G. T. & Kuzmin, V. A. Upper limit of the spectrum of cosmic rays. JETP Lett. 4, 78–80 (1966).

    ADS  Google Scholar 

  19. Ellis, J., Mavromatos, N. E., Nanopoulos, D. V. & Sakharov, A. S. Cosmology: Synchrotron radiation and quantum gravity. Nature 428, (2004).

  20. Rodríguez Martínez, M. & Piran, T. Constraining Lorentz violations with gamma ray bursts. J. Cosmol. Astropart. Phys. 04(2006)006 (2006).

  21. Choubey, S. & King, S. F. Gamma ray bursts as probes of neutrino mass, quantum gravity, and dark energy. Phys. Rev. D 67, 073005 (2003).

    Article  ADS  Google Scholar 

  22. Piran, T. The physics of gamma-ray bursts. Rev. Mod. Phys. 76, 1143–1210 (2004).

    Article  ADS  Google Scholar 

  23. Halzen, F. Astroparticle physics with high energy neutrinos: from AMANDA to IceCube. Eur. Phys. J. C 46, 669–687 (2006).

    Article  ADS  Google Scholar 

  24. Waxman, E. Extra galactic sources of high energy neutrinos. Phys. Scripta T 121, 147–152 (2005).

    Article  ADS  Google Scholar 

  25. Guetta, D. et al. Neutrinos from individual gamma-ray bursts in the BATSE catalog. Astropart. Phys. 20, 429–455 (2004).

    Article  ADS  Google Scholar 

  26. Alvarez-Muñiz, J., Halzen, F. & Hooper, D. W. High energy neutrinos from gamma ray bursts: Event rates in neutrino telescopes. Phys. Rev. D 62, 093015 (2000).

    Article  ADS  Google Scholar 

  27. Halzen, F. & Hooper, D. W. Neutrino event rates from gamma-ray bursts. Astrophys. J. Lett. 527, L93–L96 (1999).

    Article  ADS  Google Scholar 

  28. Amelino-Camelia, G. Proposal of a second generation of quantum-gravity-motivated Lorentz-Symmetry tests: Sensitivity to effects suppressed quadratically by the Planck scale. Int. J. Mod. Phys. D 12, 1633–1639 (2003).

    Article  ADS  Google Scholar 

  29. Ahrens, J. et al. Sensitivity of the IceCube detector to astrophysical sources of high energy muon neutrinos. Astropart. Phys. 20, 507–532 (2004).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This research was supported by the ISF center of excellence for High Energy Astrophysics.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Uri Jacob or Tsvi Piran.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jacob, U., Piran, T. Neutrinos from gamma-ray bursts as a tool to explore quantum-gravity-induced Lorentz violation. Nature Phys 3, 87–90 (2007). https://doi.org/10.1038/nphys506

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nphys506

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing