Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Experimental entanglement of six photons in graph states

Abstract

Graph states1,2,3—multipartite entangled states that can be represented by mathematical graphs—are important resources for quantum computation4, quantum error correction3, studies of multiparticle entanglement1 and fundamental tests of non-locality5,6,7 and decoherence8. Here, we demonstrate the experimental entanglement of six photons and engineering of multiqubit graph states9,10,11. We have created two important examples of graph states, a six-photon Greenberger–Horne–Zeilinger state5, the largest photonic Schrödinger cat so far, and a six-photon cluster state2, a state-of-the-art ‘one-way quantum computer’4. With small modifications, our method allows us, in principle, to create various further graph states, and therefore could open the way to experimental tests of, for example, quantum algorithms4,12 or loss- and fault-tolerant one-way quantum computation13,14.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Scheme to generate the six-photon graph states and their representations in the graph-state picture.
Figure 2: Experimental set-up for the generation of six-photon graph states.
Figure 3: Experimental result of the six-photon GHZ state(1).
Figure 4: The stabilizer operators and experimental result of the six-photon cluster state(2).

Similar content being viewed by others

References

  1. Hein, M., Eisert, J. & Briegel, H.-J. Multiparty entanglement in graph states. Phys. Rev. A 69, 062311 (2004).

    Article  ADS  MathSciNet  Google Scholar 

  2. Briegel, H. J. & Raussendorf, R. Persistent entanglement in arrays of interacting particles. Phys. Rev. Lett. 86, 910–913 (2001).

    Article  ADS  Google Scholar 

  3. Schlingemann, D. & Werner, R. F. Quantum error-correcting codes associated with graphs. Phys. Rev. A 65, 012308 (2002).

    Article  ADS  Google Scholar 

  4. Raussendorf, R. & Briegel, H. J. A one-way quantum computer. Phys. Rev. Lett. 86, 5188–5191 (2001).

    Article  ADS  Google Scholar 

  5. Greenberger, D. M., Horne, M. A., Shimony, A. & Zeilinger, A. Bell’s theorem without inequalities. Am. J. Phys. 58, 1131–1143 (1990).

    Article  ADS  MathSciNet  Google Scholar 

  6. Scarani, V. et al. Nonlocality of cluster states of qubits. Phys. Rev. A 71, 042325 (2005).

    Article  ADS  MathSciNet  Google Scholar 

  7. Gühne, O. et al. Bell inequalities for graph states. Phys. Rev. Lett. 95, 120405 (2005).

    Article  ADS  MathSciNet  Google Scholar 

  8. Dür, W. & Briegel, H.-J. Stability of macroscopic entanglement under decoherence. Phys. Rev. Lett. 92, 180403 (2004).

    Article  ADS  Google Scholar 

  9. Nielsen, M. A. Optical quantum computation using cluster states. Phys. Rev. Lett. 93, 040503 (2004).

    Article  ADS  Google Scholar 

  10. Browne, D. E. & Rudolph, T. Resource-efficient linear optical quantum computation. Phys. Rev. Lett. 95, 010501 (2005).

    Article  ADS  Google Scholar 

  11. Bodiya, T. P. & Duan, L.-M. Scalable generation of graph-state entanglement through realistic linear optics. Phys. Rev. Lett. 97, 143601 (2006).

    Article  ADS  Google Scholar 

  12. Paternostro, M. et al. Hybrid cluster state proposal for a quantum game. New J. Phys. 7, 226 (2005).

    Article  ADS  Google Scholar 

  13. Dawson, C. M., Haselgrove, H. L. & Nielsen, M. A. Noise thresholds for optical quantum computers. Phys. Rev. Lett. 96, 020501 (2006).

    Article  ADS  Google Scholar 

  14. Varnava, M., Browne, D. E. & Rudolph, T. Loss tolerance in one-way quantum computation via counterfactual error correction. Phys. Rev. Lett. 97, 120501 (2006).

    Article  ADS  Google Scholar 

  15. Zhao, Z. et al. Experimental demonstration of five-photon entanglement and open-destination teleportation. Nature 430, 54–58 (2004).

    Article  ADS  Google Scholar 

  16. Walther, P. et al. Experimental one-way quantum computing. Nature 434, 169–176 (2005).

    Article  ADS  Google Scholar 

  17. Leibfried, D. et al. Creation of a six-atom ‘Schrödinger cat’ state. Nature 438, 639–642 (2005).

    Article  ADS  Google Scholar 

  18. Häffner, H. et al. Scalable multiparticle entanglement of trapped ions. Nature 438, 643–646 (2005).

    Article  ADS  Google Scholar 

  19. Walther, P., Aspelmeyer, M., Resch, K. J. & Zeilinger, A. Experimental violation of a cluster state Bell inequality. Phys. Rev. Lett. 95, 020403 (2005).

    Article  ADS  Google Scholar 

  20. Kiesel, N. et al. Experimental analysis of a four-qubit photon cluster state. Phys. Rev. Lett. 95, 210502 (2005).

    Article  ADS  Google Scholar 

  21. Zeilinger, A., Horne, M. A., Weinfurter, H. & Zukowksi, M. Three-particle entanglements from two entangled pairs. Phys. Rev. Lett. 78, 3031–3034 (1997).

    Article  ADS  Google Scholar 

  22. Pan, J.-W. et al. Experimental demonstration of four-photon entanglement and high-fidelity teleportation. Phys. Rev. Lett. 86, 4435–4438 (2001).

    Article  ADS  Google Scholar 

  23. Kwiat, P. G. et al. New high-intensity source of polarization-entangled photon pairs. Phys. Rev. Lett. 75, 4337–4341 (1995).

    Article  ADS  Google Scholar 

  24. Zhang, Q. et al. Experimental quantum teleportation of a two-qubit composite system. Nature Phys. 2, 678–682 (2006).

    Article  ADS  Google Scholar 

  25. Bourennane, M. et al. Experimental detection of multipartite entanglement using witness operators. Phys. Rev. Lett. 92, 087902 (2004).

    Article  ADS  Google Scholar 

  26. Toth, G. & Gühne, O. Entanglement detection in the stabilizer formalism. Phys. Rev. A 72, 022340 (2005).

    Article  ADS  Google Scholar 

  27. Gühne, O., Reimpell, M. & Werner, R. F. Estimating entanglement measures in experiments. Preprint at <http://arxiv.org/abs/quant-ph/0607163> (2006).

  28. Bennett, C. H. et al. Mixed-state entanglement and quantum error correction. Phys. Rev. A 54, 3824–3851 (1996).

    Article  ADS  MathSciNet  Google Scholar 

  29. Dür, W., Aschauer, H. & Briegel, H.-J. Multiparticle entanglement purification for graph states. Phys. Rev. Lett. 91, 107903 (2003).

    Article  ADS  MathSciNet  Google Scholar 

  30. Pan, J.-W. et al. Experimental entanglement purification of arbitrary unknown states. Nature 423, 417–422 (2003).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank H. J. Briegel, D. Browne, L.-M. Duan, T. Rudolph and S. Yu for helpful discussions. This work was supported by the National Natural Science Foundation of China, the Chinese Academy of Sciences. This work was also supported by the Alexander von Humboldt Foundation, the Marie Curie Excellence Grant of the EU, the FWF, the DFG and EU (Scala, Olaqui, Prosecco, QICS, Quprodis).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chao-Yang Lu or Jian-Wei Pan.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lu, CY., Zhou, XQ., Gühne, O. et al. Experimental entanglement of six photons in graph states. Nature Phys 3, 91–95 (2007). https://doi.org/10.1038/nphys507

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nphys507

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing