Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A local metallic state in globally insulating La1.24Sr1.76Mn2O7 well above the metal–insulator transition

Abstract

The distinction between metals, semiconductors and insulators depends on the behaviour of the electrons nearest the Fermi level EF, which separates the occupied from the unoccupied electron energy levels. For a metal, EF lies in the middle of a band of electronic states, whereas EF in insulators and semiconductors lies in the gap between states. The temperature-induced transition from a metallic to an insulating state in a solid is generally connected to a vanishing of the low-energy electronic excitations1. Here we show the first direct evidence of a counter-example, in which a significant electronic density of states at the Fermi energy exists in the insulating regime. In particular, angle-resolved photoemission data from the colossal magnetoresistive oxide La1.24Sr1.76Mn2O7 show clear Fermi-edge steps, both below the metal–insulator transition temperature TC, when the sample is globally metallic, and above TC, when it is globally insulating. Further, small amounts of metallic spectral weight survive up to temperatures more than twice TC. Such behaviour may also have close ties to a variety of exotic phenomena in correlated electron systems, including the pseudogap temperature in underdoped cuprates2.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Overview of features of La1.24Sr1.76Mn2O7 (x=0.38).
Figure 2: EDCs as a function of temperature at kF (red line of Fig. 1b), indicating metallic spectral weight above TC.
Figure 3: Determination of T*pla.
Figure 4: Properties of the metallic portion of the sample.

Similar content being viewed by others

References

  1. Imada, M., Fujimori, A. & Tokura, Y. et al. Metal–insulator transitions. Rev. Mod. Phys. 70, 1039–1263 (1998).

    Article  ADS  Google Scholar 

  2. Timusk, T. & Statt, B. The pseudogap in high-temperature superconductors: An experimental survey. Rep. Prog. Phys. 62, 61–122 (1999).

    Article  ADS  Google Scholar 

  3. Li, Q. A., Gray, K. E. & Mitchell, J. F. Spin-independent and spin-dependent conductance anisotropy in layered colossal-magnetoresistive manganite single crystals. Phys. Rev. B 59, 9357–9361 (1999).

    Article  ADS  Google Scholar 

  4. Sun, Z. et al. Quasiparticlelike peaks, kinks, and electron-phonon coupling at the (π,0) regions in the CMR oxide La2−2xSr1+2xMn2O7 . Phys. Rev. Lett. 97, 056401 (2006).

    Article  ADS  Google Scholar 

  5. Dessau, D. S. et al. k-dependent electronic structure, a large “ghost” Fermi surface, and a pseudogap in a layered magnetoresistive oxide. Phys. Rev. Lett. 81, 192–195 (1998).

    Article  ADS  Google Scholar 

  6. Chuang, Y.-D. et al. Fermi surface nesting and nanoscale fluctuating charge/orbital ordering in colossal magnetoresistive oxides. Science 292, 1509–1513 (2001).

    Article  ADS  Google Scholar 

  7. Saitoh, T. et al. Temperature-dependent pseudogaps in colossal magnetoresistive oxides. Phys. Rev. B 62, 1039–1043 (2000).

    Article  ADS  Google Scholar 

  8. Mannella, N. et al. Nodal quasiparticle in pseudogapped colossal magnetoresistive manganites. Nature 438, 474–478 (2005).

    Article  ADS  Google Scholar 

  9. Dessau, D. S. et al. Anomalous spectral weight transfer at the superconducting transition of Bi2Sr2CaCu2O8+δ . Phys. Rev. Lett. 66, 2160–2163 (1991).

    Article  ADS  Google Scholar 

  10. Shen, Z.-X. & Dessau, D. S. Electronic structure and photoemission studies of late transition-metal oxides—Mott insulators and high-temperature superconductors. Phys. Rep. 253, 1–162 (1995).

    Article  ADS  Google Scholar 

  11. Damascelli, A., Hussain, Z. & Shen, Z.-X. Angle-resolved photoemission studies of the cuprate superconductors. Rev. Mod. Phys. 75, 473–541 (2003).

    Article  ADS  Google Scholar 

  12. Voit, J. One-dimensional Fermi liquids. Rep. Prog. Phys. 57, 977–1116 (1995).

    Article  ADS  Google Scholar 

  13. Allen, J. W. Quasiparticles and their absence in photoemission spectroscopy. Solid State Commun. 123, 469–487 (2002).

    Article  ADS  Google Scholar 

  14. Varma, C. M. Electronic and magnetic states in the giant magnetoresistive compounds. Phys. Rev. B 54, 7328–7333 (1996).

    Article  ADS  Google Scholar 

  15. Argyriou, D. N. et al. Two-dimensional ferromagnetic correlations above TC in the naturally layered CMR manganite La2−2xSr1+2xMn2O7 (x=0.3–0.4). J. Appl. Phys. 83, 6374–6378 (1998).

    Article  ADS  Google Scholar 

  16. Osborn, R. et al. Neutron scattering investigation of magnetic bilayer correlations in La1.2Sr1.8Mn2O7: Evidence of canting above TC . Phys. Rev. Lett. 81, 3964 (1998).

    Article  ADS  Google Scholar 

  17. Rosenkranz, S. et al. Observation of Kosterlitz–Thouless spin correlations in the colossally magnetoresistive layered manganite La1.2Sr1.8Mn2O7. Preprint at <http://www.arxiv.org/abs/cond-mat/9909059> (1999).

  18. Rosenkranz, S. et al. Spin correlations and magnetoresistance in the bilayer manganite La1.2Sr1.8Mn2O7 . Physica B 312–313, 763–765 (2002).

    Article  ADS  Google Scholar 

  19. Uehara, M., Mori, S., Chen, C. H. & Cheong, S.-W. Percolative phase separation underlies colossal magnetoresistance in mixed-valent manganites. Nature 399, 560–563 (1999).

    Article  ADS  Google Scholar 

  20. Dagotto, E. Nanoscale Phase Separation and Colossal Magnetoresistance: The Physics of Manganites and Related Compounds (Springer, Berlin, 2003).

    Book  Google Scholar 

  21. Argyriou, D. N. et al. Glass transition in the polaron dynamics of colossal magnetoresistive manganites. Phys. Rev. Lett. 89, 36401 (2002).

    Article  ADS  Google Scholar 

  22. Dagotto, E. Complexity in strongly correlated electronic systems. Science 309, 257–262 (2005).

    Article  ADS  Google Scholar 

  23. Tokura, Y. Critical features of colossal magnetoresistive manganites. Rep. Prog. Phys. 69, 797–851 (2006).

    Article  ADS  Google Scholar 

  24. Burgy, J., Mayr, M., Martin-Mayor, V., Moreo, A. & Dagotto, E. Colossal effects in transition metal oxides caused by intrinsic inhomogeneities. Phys. Rev. Lett. 87, 277202 (2001).

    Article  ADS  Google Scholar 

  25. Griffiths, R. B. Nonanalytic behavior above the critical point in a random Ising ferromagnet. Phys. Rev. Lett. 23, 17 (1969).

    Article  ADS  Google Scholar 

  26. Salamon, M. B., Lin, P. & Chun, S. H. Colossal magnetoresistance is a Griffiths singularity. Phys. Rev. Lett. 88, 197203 (2002).

    Article  ADS  Google Scholar 

  27. Emery, V. J. & Kivelson, S. A. Importance of phase fluctuations in superconductors with small superfluid density. Nature 374, 434–437 (1995).

    Article  ADS  Google Scholar 

  28. Murakami, S. & Nagaosa, N. Colossal magnetoresistance in manganites as a multicritical phenomenon. Phys. Rev. Lett. 90, 197201 (2003).

    Article  ADS  Google Scholar 

  29. Mitchell, J. et al. Spin, charge and lattice states in layered magneto-resistive oxides. J. Phys. Chem. B 105, 10731–10745 (2001).

    Article  Google Scholar 

  30. Kubota, M. et al. Relation between crystal and magnetic structures of layered maganite La2−2xSr1+2xMn2O7 (0.30≤x≤0.50). J. Phys. Soc. Jpn 69, 1606–1609 (2000).

    Article  ADS  Google Scholar 

  31. Vasiliu-Doloc, L. et al. Charge melting and polaron collapse in La1.2Sr1.8Mn2O7 . Phys. Rev. Lett. 83, 4393–4396 (1999).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors thank K. Gray for the resistivity data of Fig. 1a and Y. Tokura and T. Kimura for providing preliminary samples, and are grateful to D. N. Argyriou, A. Bansil, E. Dagotto, K. Gray, A. Moreo, R. Osborn, L. Radzihovsky, D. Reznik, S. Rosenkranz, Y. Tokura and M. Veillette for helpful discussions. Primary support for this work came from US National Science Foundation grant DMR 0402814, with other support from the US Department of Energy under grant DE-FG02-03ER46066. The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, US Department of Energy, under contract No. DE-AC02-05CH11231. Argonne National Laboratory, a US Department of Energy Office of Science Laboratory, is operated under contract No. DE-AC02-06CH11357. The US Government retains for itself, and others acting on its behalf, a paid-up non-exclusive, irrevocable worldwide license in said article to reproduce, prepare derivative works, distribute copies to the public and perform publicly and display publicly, by or on behalf of the government.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Z. Sun or D. S. Dessau.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sun, Z., Douglas, J., Fedorov, A. et al. A local metallic state in globally insulating La1.24Sr1.76Mn2O7 well above the metal–insulator transition. Nature Phys 3, 248–252 (2007). https://doi.org/10.1038/nphys517

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nphys517

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing