Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Kinks in the dispersion of strongly correlated electrons

Abstract

The properties of condensed matter are determined by single-particle and collective excitations and their mutual interactions. These quantum-mechanical excitations are characterized by an energy, E, and a momentum, k, which are related through their dispersion, Ek. The coupling of excitations may lead to abrupt changes (kinks) in the slope of the dispersion. Kinks thus carry important information about the internal degrees of freedom of a many-body system and their effective interaction. Here, we report a novel, purely electronic mechanism leading to kinks, which is not related to any coupling of excitations. Namely, kinks are predicted for any strongly correlated metal whose spectral function shows a three-peak structure with well-separated Hubbard subbands and a central peak, as observed, for example, in transition-metal oxides. These kinks can appear at energies as high as a few hundred millielectron volts, as found in recent spectroscopy experiments on high-temperature superconductors1,2,3,4 and other transition-metal oxides5,6,7,8. Our theory determines not only the position of the kinks but also the range of validity of Fermi-liquid theory.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Kinks in the dispersion relation, Ek, for a strongly correlated system.
Figure 2: Local propagator and self-energy for a strongly correlated system.

Similar content being viewed by others

References

  1. Graf, J. et al. A universal high energy anomaly in the electron spectrum of high temperature superconductors by angle—possible evidence of spinon and holon branches. Phys. Rev. Lett. (2006) (in the press) <http://www.arxiv.org/cond-mat/0607319>.

  2. Valla, T. et al. High-energy kink in high-temperature superconductors. Preprint at <http://www.arxiv.org/cond-mat/0610249> (2006).

  3. Pan, Z.-H. et al. Universal quasiparticle decoherence in hole- and electron-doped high-Tc cuprates. Preprint at <http://www.arxiv.org/cond-mat/0610442> (2006).

  4. Meevasana, W. et al. The hierarchy of multiple many-body interaction scales in high-temperature superconductors. Preprint at <http://www.arxiv.org/cond-mat/0612541> (2006).

  5. Aiura, Y. et al. Kink in the dispersion of layered strontium ruthenates. Phys. Rev. Lett. 93, 117005 (2004).

    Article  ADS  Google Scholar 

  6. Iwasawa, H. et al. Orbital selectivity of the kink in the dispersion of Sr2RuO4 . Phys. Rev. B 72, 104514 (2005).

    Article  ADS  Google Scholar 

  7. Yoshida, T. et al. Direct observation of the mass renormalization in SrVO3 by angle resolved photoemission spectroscopy. Phys. Rev. Lett. 95, 146404 (2005).

    Article  ADS  Google Scholar 

  8. Sun, Z. et al. Quasiparticle-like peaks, kinks, and electron-phonon coupling at the (π,0) regions in the CMR oxide La2−2xSr1+2xMn2O7 . Phys. Rev. Lett. 97, 056401 (2006).

    Article  ADS  Google Scholar 

  9. Hengsberger, M., Purdie, D., Segovia, P., Garnier, M. & Baer, Y. Photoemission study of a strongly coupled electron-phonon system. Phys. Rev. Lett. 83, 592–595 (1999).

    Article  ADS  Google Scholar 

  10. Valla, T., Fedorov, A. V., Johnson, P. D. & Hulbert, S. L. Many-body effects in angle-resolved photoemission: Quasiparticle energy and lifetime of a Mo(110) surface state. Phys. Rev. Lett. 83, 2085–2088 (1999).

    Article  ADS  Google Scholar 

  11. Rotenberg, E., Schaefer, J. & Kevan, S. D. Coupling between adsorbate vibrations and an electronic surface state. Phys. Rev. Lett. 84, 2925–2928 (2000).

    Article  ADS  Google Scholar 

  12. Lanzara, A. et al. Evidence for ubiquitous strong electron–phonon coupling in high-temperature superconductors. Nature 412, 510–514 (2001).

    Article  ADS  Google Scholar 

  13. Shen, Z.-X., Lanzara, A., Ishihara, S. & Nagaosa, N. Role of the electron-phonon interaction in the strongly correlated cuprate superconductors. Phil. Mag. B 82, 1349–1368 (2002).

    Article  ADS  Google Scholar 

  14. He, H. et al. Resonant spin excitation in an overdoped high temperature superconductor. Phys. Rev. Lett. 86, 1610–1613 (2001).

    Article  ADS  Google Scholar 

  15. Hwang, J., Timusk, T. & Gu, G. D. High-transition-temperature superconductivity in the absence of the magnetic-resonance mode. Nature 427, 714–717 (2004).

    Article  ADS  Google Scholar 

  16. Higashiguchi, M. et al. High-resolution angle-resolved photoemission study of Ni(1 1 0). J. Electron Spectrosc. Relat. Phenom. 144–147, 639–642 (2005).

    Article  Google Scholar 

  17. Schäfer, J. et al. Electronic quasiparticle renormalization on the spin wave energy scale. Phys. Rev. Lett. 92, 097205 (2004).

    Article  ADS  Google Scholar 

  18. Menzel, A. et al. Correlation in low-dimensional electronic states on metal surface. New J. Phys. 7, 102 (2005).

    Article  ADS  Google Scholar 

  19. Ronning, F. et al. Evolution of a metal to insulator transition in Ca2−xNaxCuO2Cl2 as seen by angle-resolved photoemission. Phys. Rev. B 67, 165101 (2003).

    Article  ADS  Google Scholar 

  20. Yang, H.-B. et al. Fermi surface evolution and Luttinger theorem in NaxCoO2: a systematic photoemission study. Phys. Rev. Lett. 95, 146401 (2005).

    Article  ADS  Google Scholar 

  21. Bostwick, A., Ohta, T., Seyller, T., Horn, K. & Rotenberg, E. Quasiparticle dynamics in graphene. Nature Phys. 3, 36 (2007).

    Article  ADS  Google Scholar 

  22. Abrikosov, A. A., Gorkov, L. P. & Dzyaloshinski, I. E. Methods of Quantum Field Theory in Statistical Physics (Dover, New York, 1975).

    MATH  Google Scholar 

  23. Metzner, W. & Vollhardt, D. Correlated lattice fermions in d=∞ dimensions. Phys. Rev. Lett. 62, 324–327 (1989).

    Article  ADS  Google Scholar 

  24. Pruschke, Th., Jarrell, M. & Freericks, J. K. Anomalous normal-state properties of high- T c superconductors: intrinsic properties of strongly correlated electron systems? Adv. Phys. 44, 187–210 (1995).

    Article  ADS  Google Scholar 

  25. Georges, A., Kotliar, G., Krauth, W. & Rozenberg, M. J. Dynamical mean-field theory of strongly correlated fermion systems and the limit of infinite dimensions. Rev. Mod. Phys. 68, 13–125 (1996).

    Article  ADS  MathSciNet  Google Scholar 

  26. Kotliar, G. & Vollhardt, D. Strongly correlated materials: Insights from dynamical mean-field theory. Phys. Today 57, 53–59 (2004).

    Article  Google Scholar 

  27. Nekrasov, I. A. et al. Momentum-resolved spectral functions of SrVO3 calculated by LDA+DMFT. Phys. Rev. B 73, 155112 (2006).

    Article  ADS  Google Scholar 

  28. Bulla, R., Pruschke, Th. & Hewson, A. C. Metal-insulator transition in the Hubbard model. Physica B 259–261, 721–722 (1999).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We acknowledge discussions with V. I. Anisimov, R. Bulla, J. Fink, A. Fujimori and D. Manske. This work was supported by the Deutsche Forschungsgemeinschaft through Sonderforschungsbereiche 484 (K.B., M.K., D.V.) and 602 (T.P.) and the Emmy-Noether program (K.H.), and in part by the Russian Basic Research foundation grants 05-02-16301, 05-02-17244, 06-02-90537 as well as by the RAS Programs ‘Quantum macrophysics’ and ‘Strongly correlated electrons in semiconductors, metals, superconductors and magnetic materials’, Dynasty Foundation, Grant of President of Russia MK-2118.2005.02, interdisciplinary grant UB-SB RAS (I.N.). We thank the John von Neumann Institute for Computing, Forschungszentrum Jülich and the Norddeutsche Verbund für Hoch- und Höchstleistungsrechnen for computing time.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to K. Byczuk or M. Kollar.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Byczuk, K., Kollar, M., Held, K. et al. Kinks in the dispersion of strongly correlated electrons. Nature Phys 3, 168–171 (2007). https://doi.org/10.1038/nphys538

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nphys538

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing