Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Spin–valley phase diagram of the two-dimensional metal–insulator transition

Abstract

The metallic behaviour of the resistivity observed at low temperatures in low-disorder, dilute, two-dimensional (2D) carrier systems is of considerable interest as it defies the scaling theory of localization in two dimensions1. Although the origin of the metallic behaviour remains unknown and controversial, there is widespread evidence that the spin degree of the freedom plays a crucial role. Here, we directly probe the role of another discrete electronic degree of freedom, namely the valley polarization. Using symmetry-breaking strain together with an in-plane magnetic field to tune the valley and spin polarizations of an AlAs 2D electron system at fixed density, we map out a spin–valley phase diagram for its metal–insulator transition. The insulating phase occurs in the quadrant where the system is sufficiently spin and valley polarized. This observation establishes the equivalent roles of spin and valley degrees of freedom in the 2D metal–insulator transition.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Experimental set-up and the spin–valley metal–insulator phase diagram.
Figure 2: Data for a 15-nm-wide AlAs quantum well sample.

Similar content being viewed by others

References

  1. Abrahams, E., Anderson, P. W., Licciardello, D. C. & Ramakrishnan, T. V. Scaling theory of localization: Absence of quantum diffusion in two dimensions. Phys. Rev. Lett. 42, 673–676 (1979).

    Article  ADS  Google Scholar 

  2. Kravchenko, S. V., Kravchenko, G. V., Furneaux, J. E., Pudalov, V. M. & D’Iorio, M. Possible metal-insulator transition at B=0 in two dimensions. Phys. Rev. B 50, 8039–8042 (1994).

    Article  ADS  Google Scholar 

  3. Kravchenko, S. V. & Sarachik, M. P. Metal-insulator transition in two-dimensional electron systems. Rep. Prog. Phys. 67, 1–44 (2004).

    Article  ADS  Google Scholar 

  4. Das Sarma, S. & Hwang, E. H. The so-called two dimensional metal-insulator transition. Solid State Commun. 135, 579–590 (2005).

    Article  ADS  Google Scholar 

  5. Zala, G., Narozhny, B. N. & Aleiner, I. L. Interaction corrections at intermediate temperatures: Magnetoresistance in a parallel field. Phys. Rev. B 65, R20201 (2001).

    Article  Google Scholar 

  6. Papadakis, S. J. & Shayegan, M. Apparent metallic behavior at B=0 of a two-dimensional electron system in AlAs. Phys. Rev. B 57, R15068–R15071 (1998).

    Article  ADS  Google Scholar 

  7. Hanein, Y. et al. Observation of the metal-insulator transition in two-dimensional n-type GaAs. Phys. Rev. B 58, R13338–R13340 (1998).

    Article  ADS  Google Scholar 

  8. Lai, K., Pan, W., Tsui, D. C. & Xie, Y.-H. Observation of the apparent metal-insulator transition of high mobility two-dimensional electron system in SiGe heterostructure. Appl. Phys. Lett. 84, 302–304 (2004).

    Article  ADS  Google Scholar 

  9. Lai, K. et al. Two-dimensional metal insulator transition and in-plane magnetoresistance in a high-mobility strained Si quantum well. Phys. Rev. B 72, R81313 (2005).

    Article  ADS  Google Scholar 

  10. Okamoto, T., Ooya, M., Hosoya, K. & Kawaji, S. Spin polarization and metallic behavior in a silicon two-dimensional electron system. Phys. Rev. B 69, R41202 (2004).

    Article  ADS  Google Scholar 

  11. Hanein, Y. et al. The metallic-like conductivity of a two-dimensional hole system. Phys. Rev. Lett. 80, 1288–1291 (1998).

    Article  ADS  Google Scholar 

  12. Simmons, M. Y. et al. Metal-insulator transition at B=0 in a dilute two dimensional GaAs–AlGaAs hole gas. Phys. Rev. Lett. 80, 1292–1295 (1998).

    Article  ADS  Google Scholar 

  13. Murzin, S. S., Dorozhkin, S. I., Landwehr, G. & Gossard, A. C. Effect of hole-hole scattering on the conductivity of the two-component 2D hole gas in GaAs/(AlGa)As heterostructures. JETP Lett. 67, 113–119 (1998).

    Article  ADS  Google Scholar 

  14. Lam, J., D’Iorio, M., Brown, D. & Lafontaine, H. Scaling and the metal-insulator transition in Si/SiGe quantum wells. Phys. Rev. B 56, R12741–R12743 (1997).

    Article  ADS  Google Scholar 

  15. Coleridge, P. T., Williams, R. L., Feng, Y. & Zawadzki, P. Metal-insulator transition at B=0 in p-type SiGe. Phys. Rev. B 56, R12764–R12767 (1997).

    Article  ADS  Google Scholar 

  16. Papadakis, S. J., De Poortere, E. P., Manoharan, H. C., Shayegan, M. & Winkler, R. The effect of spin splitting on the metallic behavior of a two-dimensional system. Science 283, 2056–2058 (1999).

    Article  ADS  Google Scholar 

  17. Yaish, Y. et al. Effect of hole-hole scattering on the conductivity of the two-component 2D hole gas in GaAs/(AlGa)As heterostructures. Phys. Rev. Lett. 84, 4954–4957 (2000).

    Article  ADS  Google Scholar 

  18. Simonian, D., Kravchenko, S. V., Sarachik, M. P. & Pudalov, V. M. Magnetic field suppression of the conducting phase in two dimensions. Phys. Rev. Lett. 79, 2304–2307 (1997).

    Article  ADS  Google Scholar 

  19. Okamoto, T., Hosoya, K., Kawaji, S. & Yagi, A. Spin degree of freedom in a two-dimensional electron liquid. Phys. Rev. Lett. 82, 3875–3878 (1999).

    Article  ADS  Google Scholar 

  20. Yoon, J., Li, C. C., Shahar, D., Tsui, D. C. & Shayegan, M. Parallel magnetic field induced transition in transport in the dilute two-dimensional hole system in GaAs. Phys. Rev. Lett. 84, 4421–4424 (2000).

    Article  ADS  Google Scholar 

  21. Papadakis, S. J., De Poortere, E. P., Shayegan, M. & Winkler, R. Anisotropic magnetoresistance of two-dimensional holes in GaAs. Phys. Rev. Lett. 84, 5592–5595 (2000).

    Article  ADS  Google Scholar 

  22. Tutuc, E., De Poortere, E. P., Papadakis, S. J. & Shayegan, M. In-plane magnetic field-induced spin polarization and transition to insulating behavior in two-dimensional hole systems. Phys. Rev. Lett. 86, 2858–2861 (2001).

    Article  ADS  Google Scholar 

  23. Das Sarma, S. & Hwang, E. H. Low-density finite-temperature apparent insulating phase in two-dimensional semiconductor systems. Phys. Rev. B 72, 205303 (2005).

    Article  ADS  Google Scholar 

  24. Punnoose, A. & Finkelstein, A. M. Metal-insulator transition in disordered two-dimensional electron system. Science 310, 289–291 (2005).

    Article  ADS  Google Scholar 

  25. De Poortere, E. P. et al. Enhanced electron mobility and high order fractional quantum Hall states in AlAs quantum wells. Appl. Phys. Lett. 80, 1583–1585 (2002).

    Article  ADS  Google Scholar 

  26. Shayegan, M. et al. Low-temperature, in situ tunable, uniaxial stress measurements in semiconductors using a piezoelectric actuator. Appl. Phys. Lett. 83, 5235–5237 (2003).

    Article  ADS  Google Scholar 

  27. Gunawan, O. et al. Valley susceptibility of an interacting two-dimensional electron system. Phys. Rev. Lett. 97, 186404 (2006).

    Article  ADS  Google Scholar 

  28. Dolgopolov, V. T. & Gold, A. Magnetoresistance of a two-dimensional electron gas in a parallel magnetic field. JETP Lett. 71, 27–30 (2000).

    Article  ADS  Google Scholar 

  29. Shkolnikov, Y. P., Vakili, K., De Poortere, E. P. & Shayegan, M. Dependence of spin susceptibility of a two-dimensional electron system on the valley degree of freedom. Phys. Rev. Lett. 92, 246804 (2004).

    Article  ADS  Google Scholar 

  30. Tutuc, E., Melinte, S., De Poortere, E. P., Shayegan, M. & Winkler, R. Role of finite layer thickness in spin polarization of GaAs two-dimensional electrons in strong parallel magnetic fields. Phys. Rev. B 67, R241309 (2003).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank the NSF and ARO for support and Y. P. Shkolnikov, E. Tutuc and K. Lai for illuminating discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Shayegan.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gunawan, O., Gokmen, T., Vakili, K. et al. Spin–valley phase diagram of the two-dimensional metal–insulator transition. Nature Phys 3, 388–391 (2007). https://doi.org/10.1038/nphys596

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nphys596

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing