Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Breaking the delay-bandwidth limit in a photonic structure

Abstract

Storing light on-chip, which requires that the speed of light be significantly slowed down, is crucial for enabling photonic circuits on-chip. Ultraslow propagation1,2,3 and even stopping4,5 of light have been demonstrated using the electromagnetically induced transparency effect in atomic systems1,3,4,5 and the coherent population oscillation effect in solid-state systems2. The wavelengths and bandwidths of light in such devices are tightly constrained by the property of the material absorption lines, which limits their application in information technologies. Various slow-light devices based on photonic structures have also been demonstrated6,7,8,9,10; however, these devices suffer a fundamental trade-off between the transmission bandwidth and the optical delay. It has been shown theoretically11,12,13 that stopping light on-chip and thereby breaking the fundamental link between the delay and the bandwidth can be achieved by ultrafast tuning of photonic structures. Using this mechanism, here we report the first demonstration of storing light using photonic structures on-chip, with storage times longer than the bandwidth-determined photon lifetime of the static device. The release time of the pulse is externally controlled.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The device structure and the storing light operation.
Figure 2: Output waveforms with different storage times.
Figure 3: The temporal decay of optical energy stored in the cavity.
Figure 4: The spectra of the optical output.

Similar content being viewed by others

References

  1. Hau, L. V., Harris, S. E., Dutton, Z. & Behroozi, C. H. Light speed reduction to 17 metres per second in an ultracold atomic gas. Nature 397, 594–598 (1999).

    Article  ADS  Google Scholar 

  2. Bigelow, M. S., Lepeshkin, N. N. & Boyd, R. W. Superluminal and slow light propagation in a room-temperature solid. Science 301, 200–202 (2003).

    Article  ADS  Google Scholar 

  3. Ghosh, S., Sharping, J. E., Ouzounov, D. G. & Gaeta, A. L. Resonant optical interactions with molecules confined in photonic band-gap fibers. Phys. Rev. Lett. 94, 093902 (2005).

    Article  ADS  Google Scholar 

  4. Liu, C., Dutton, Z., Behroozi, C. H. & Hau, L. V. Observation of coherent optical information storage in an atomic medium using halted light pulses. Nature 409, 490–493 (2001).

    Article  ADS  Google Scholar 

  5. Phillips, D. F., Fleischhauer, A., Mair, A., Walsworth, R. L. & Lukin, M. D. Storage of light in atomic vapor. Phys. Rev. Lett. 86, 783–786 (2001).

    Article  ADS  Google Scholar 

  6. Vlasov, Y. A., O’Boyle, M., Hamann, H. F. & McNab, S. J. Active control of slow light on a chip with photonic crystal waveguides. Nature 438, 65–69 (2005).

    Article  ADS  Google Scholar 

  7. Gersen, H. et al. Real-space observation of ultraslow light in photonic crystal waveguides. Phys. Rev. Lett. 94, 073903 (2005).

    Article  ADS  Google Scholar 

  8. Poon, J. K., Zhu, L., DeRose, G. A. & Yariv, A. Transmission and group delay of microring coupled-resonator optical waveguides. Opt. Lett. 31, 456–458 (2006).

    Article  ADS  Google Scholar 

  9. Xu, Q. et al. Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency. Phys. Rev. Lett. 96, 123901 (2006).

    Article  ADS  Google Scholar 

  10. Xu, Q., Shakya, J. & Lipson, M. Direct measurement of tunable optical delays on chip analogue to electromagnetically induced transparency. Opt. Express 14, 6463–6468 (2006).

    Article  ADS  Google Scholar 

  11. Yanik, M. F., Suh, W., Wang, Z. & Fan, S. Stopping light in a waveguide with an all-optical analogue of electromagnetically induced transparency. Phys. Rev. Lett. 93, 233903 (2004).

    Article  ADS  Google Scholar 

  12. Yanik, M. F. & Fan, S. Stopping light all-optically. Phys. Rev. Lett. 92, 083901 (2004).

    Article  ADS  Google Scholar 

  13. Yanik, M. F. & Fan, S. Stopping and storing light coherently. Phys. Rev. A 71, 013803 (2005).

    Article  ADS  Google Scholar 

  14. Chu, S. T., Little, B. E., Pan, W., Kaneko, T. & Kokebun, Y. Second-order filter response from parallel coupled glass microring resonators. IEEE Photon. Technol. Lett. 11, 1426–1428 (1999).

    Article  ADS  Google Scholar 

  15. Matsko, A. B., Savchenkov, A. A., Strekalov, D., Ilchenko, V. S. & Maleki, L. Interference effects in lossy resonator chains. J. Mod. Opt. 51, 2515–2522 (2004).

    Article  ADS  Google Scholar 

  16. Emelett, S. & Soref, R. Analysis of dual-microring-resonator cross-connect switches and modulators. Opt. Express 13, 7840–7853 (2005).

    Article  ADS  Google Scholar 

  17. Almeida, V. R., Barrios, C. A., Panepucci, R. R. & Lipson, M. All-optical control of light on a silicon chip. Nature 431, 1081–1084 (2004).

    Article  ADS  Google Scholar 

  18. Almeida, V. R. et al. All-optical switching on a silicon chip. Opt. Lett. 29, 2867–2869 (2004).

    Article  ADS  Google Scholar 

  19. Xu, Q., Schmidt, B., Pradhan, S. & Lipson, M. Micrometre-scale silicon electro-optic modulator. Nature 435, 325–327 (2005).

    Article  ADS  Google Scholar 

  20. Soref, R. A. & Bennett, B. R. Electrooptical effects in silicon. IEEE J. Quantum Electron. 23, 123–129 (1987).

    Article  ADS  Google Scholar 

  21. Borselli, M., Johnson, T. J. & Painter, O. Measuring the role of surface chemistry in silicon microphotonics. App. Phys. Lett. 88, 131114 (2006).

    Article  ADS  Google Scholar 

  22. Preble, S. F., Xu, Q., Schmidt, B. S. & Lipson, M. Ultrafast all-optical modulation on a silicon chip. Opt. Lett. 30, 2891–2893 (2005).

    Article  ADS  Google Scholar 

  23. Notomi, M. & Mitsugi, S. Wavelength conversion via dynamic refractive index tuning of a cavity. Phys. Rev. A 73, 051803 (2006).

    Article  ADS  Google Scholar 

  24. Gaburro, Z. et al. Photon energy lifter. Opt. Express 14, 7270–7278 (2006).

    Article  ADS  Google Scholar 

  25. Borselli, M. High-Q Microresonators as Lasing Elements for Silicon Photonics. Thesis, California Institute of Technology, Pasadena (2006).

  26. Almeida, V. R., Panepucci, R. R. & Lipson, M. Nanotaper for compact mode conversion. Opt. Lett. 28, 1302–1304 (2003).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors thank S. Fan of Stanford University for fruitful discussions. This work was carried out in part at the Cornell Nano-Scale Science & Technology Facility (CNF) and the Cornell Center for Nanoscale Systems (CNS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michal Lipson.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, Q., Dong, P. & Lipson, M. Breaking the delay-bandwidth limit in a photonic structure. Nature Phys 3, 406–410 (2007). https://doi.org/10.1038/nphys600

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nphys600

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing