Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Entangled Andreev pairs and collective excitations in nanoscale superconductors

Abstract

Nanoscale superconductors connected to normal metallic electrodes provide a potential source of entangled electron pairs1,2,3,4,5. Such states would arise from the splitting of Cooper pairs in the superconductor into two electrons with opposite spins, which then tunnel into different leads by means of a process known as crossed Andreev reflection (refs 6, 7, 8). In an actual system, the detection of these processes is hindered by the elastic transmission of individual electrons between the leads, which yields an opposite contribution to the non-local conductance. Here we demonstrate that low-energy collective excitations, which appear in superconducting structures of reduced dimensionality9, can have a significant influence on the transport properties of this type of hybrid nanostructure. When an electron tunnels into the superconductor it can excite such low-energy excitations that alter the balance between the different electronic processes, leading to a dominance of one over the other depending on the spatial symmetry of these excitations. These findings help to clarify some intriguing experimental results and provide future strategies for the detection of entangled electron pairs in solid-state devices for quantum computation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Typical set-ups and basic microscopic processes in non-local transport through a superconductor.
Figure 2: Effect of interactions in the non-local conductance.
Figure 3: Non-local conductance in double planar junction geometry.

Similar content being viewed by others

References

  1. Recher, P., Sukhorukov, E. V. & Loss, D. Andreev tunneling, Coulomb blockade, and resonant transport of nonlocal spin-entangled electrons. Phys. Rev. B 63, 165314 (2001).

    Article  ADS  Google Scholar 

  2. Chtchelkatchev, N. M., Blatter, G., Lesovik, G. B. & Martin, T. Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002).

    Article  ADS  Google Scholar 

  3. Bena, C., Vishveshwara, S., Balents, L. & Fisher, M. P. A. Quantum entanglement in carbon nanotubes. Phys. Rev. Lett. 89, 037901 (2002).

    Article  ADS  Google Scholar 

  4. Samuelsson, P., Sukhorukov, E. V. & Büttiker, M. Orbital entanglement and violation of Bell inequalities in mesoscopic conductors. Phys. Rev. Lett. 91, 157002 (2003).

    Article  ADS  Google Scholar 

  5. Prada, E. & Sols, F. Entangled electron current through finite size normal-superconductor tunneling structures. Eur. Phys. J. B 40, 379–396 (2004).

    Article  ADS  Google Scholar 

  6. Byers, J. M. & Flatté, M. E. Probing spatial correlations with nanoscale two-contact tunneling. Phys. Rev. Lett. 74, 306–309 (1995).

    Article  ADS  Google Scholar 

  7. den Hartog, S. G. et al. Transport in multiterminal normal-superconductor devices: Reciprocity relations, negative and nonlocal resistances, and reentrance of the proximity effect. Phys. Rev. Lett. 77, 4954–4957 (1996).

    Article  ADS  Google Scholar 

  8. Deutscher, G. & Feinberg, D. Coupling superconducting-ferromagnetic point contacts by Andreev reflections. Appl. Phys. Lett. 76, 487–489 (2000).

    Article  ADS  Google Scholar 

  9. Mooij, J. E. & Schön, G. Propagating plasma mode in thin superconducting filaments. Phys. Rev. Lett. 55, 114–117 (1985).

    Article  ADS  Google Scholar 

  10. Beckmann, D., Weber, H. B. & Löhneysen, H. v. Evidence for crossed Andreev reflection in superconductor-ferromagnet hybrid structures. Phys. Rev. Lett. 93, 197003 (2004).

    Article  ADS  Google Scholar 

  11. Russo, S., Kroug, M., Klapwijk, T. M. & Morpurgo, A. F. Experimental observation of bias-dependent nonlocal Andreev reflection. Phys. Rev. Lett. 95, 027002 (2005).

    Article  ADS  Google Scholar 

  12. Falci, G., Feinberg, D. & Hekking, F. W. J. Correlated tunneling into a superconductor in a multiprobe hybrid structure. Europhys. Lett. 54, 255–261 (2001).

    Article  ADS  Google Scholar 

  13. Feinberg, D. Andreev scattering and cotunneling between two superconductor-normal metal interfaces: the dirty limit. Eur. Phys. J. B 36, 419–422 (2003).

    Article  ADS  Google Scholar 

  14. Mélin, R. & Feinberg, D. Sign of the crossed conductances at a ferromagnet/superconductor/ferromagnet double interface. Phys. Rev. B 70, 174509–174518 (2004).

    Article  ADS  Google Scholar 

  15. Hermele, M., Rafael, G., Fisher, M. P. A. & Goldbart, P. M. Fate of the Josephson effect in thin-film superconductors. Nature Phys. 1, 117–121 (2005).

    Article  ADS  Google Scholar 

  16. Orlando, T. P. & Delin, K. E. Foundations of Applied Superconductivity (Addison-Wesley, Reading, 1991).

    Book  Google Scholar 

  17. Gubin, A. I. et al. Dependence of magnetic penetration depth on the thickness of superconducting Nb thin films. Phys. Rev. B 72, 064503 (2005).

    Article  ADS  Google Scholar 

  18. Parage, F., Doria, M. M. & Buisson, O. Plasma modes in periodic two-dimensional superconducting-wire networks. Phys. Rev. B 58, R8921–R8924 (1998).

    Article  ADS  Google Scholar 

  19. Cadden-Zimansky, P. & Chandrasekhar, V. Non-local correlations in normal metal-superconducting systems. Phys. Rev. Lett. 97, 237003 (2006).

    Article  ADS  Google Scholar 

  20. Beckmann, D. & Lohneysen, H. v. Negative four-terminal resistance as a probe of crossed Andreev reflection. Preprint at <http://arxiv.org/abs/cond-mat/0609766> (2006).

  21. Fertig, H. A. & Das Sarma, S. Collective modes in layered superconductors. Phys. Rev. Lett. 65, 1482–1485 (1990).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge fruitful discussions and correspondence with D. Beckmann, A. Morpurgo, S. Russo, C. Urbina, D. Esteve, W. Herrera, R. C. Monreal, J. C. Cuevas and A. F. Volkov. Financial support by the Spanish M.E.C. under contract FIS2005-06255 is acknowledged. F.S.B. acknowledges funding by the Ramón y Cajal program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Levy Yeyati.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yeyati, A., Bergeret, F., Martín-Rodero, A. et al. Entangled Andreev pairs and collective excitations in nanoscale superconductors. Nature Phys 3, 455–459 (2007). https://doi.org/10.1038/nphys621

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nphys621

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing