Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Quantum interference of photon pairs from two remote trapped atomic ions

Abstract

Trapped atomic ions are among the most attractive implementations of quantum bits for applications in quantum-information processing, owing to their long trapping lifetimes and long coherence times. Although nearby trapped ions can be entangled through their Coulomb-coupled motion1,2,3,4,5,6, it seems more natural to entangle remotely located ions through a coupling mediated by photons, eliminating the need to control the ion motion. A promising way to entangle ions via a photonic channel is to interfere two photons emitted from the ions and then detect appropriate photon coincidence events7,8,9. Here, we report the pivotal element of this scheme in the observation of quantum interference between pairs of single photons emitted from two atomic ions residing in independent traps.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The ytterbium set-up.
Figure 2: Intensity autocorrelation of the light emitted by a single ion excited by picosecond pulses.
Figure 3: Normalized intensity cross-correlation of photons emitted by two ions.

Similar content being viewed by others

References

  1. Cirac, J. I. & Zoller, P. Quantum computations with cold trapped ions. Phys. Rev. Lett. 74, 4091–4094 (1995).

    Article  ADS  Google Scholar 

  2. Mølmer, K. & Sørensen, A. Multiparticle entanglement of hot trapped ions. Phys. Rev. Lett. 82, 1835–1838 (1999).

    Article  ADS  Google Scholar 

  3. Milburn, G. J., Schneider, S. & James, D. F. V. Ion trap quantum computing with warm ions. Fortschr. Phys. 48, 801–810 (2000).

    Article  Google Scholar 

  4. Sackett, C. A. et al. Experimental entanglement of four particles. Nature 404, 256–259 (2000).

    Article  ADS  Google Scholar 

  5. Leibfried, D. et al. Creation of a six-atom ‘Schrödinger cat’ state. Nature 438, 639–642 (2005).

    Article  ADS  Google Scholar 

  6. Häffner, H. et al. Scalable multiparticle entanglement of trapped ions. Nature 438, 643–646 (2005).

    Article  ADS  Google Scholar 

  7. Simon, C. & Irvine, W. T. M. Robust long-distance entanglement and a loophole-free Bell test with ions and photons. Phys. Rev. Lett. 91, 110405 (2003).

    Article  ADS  Google Scholar 

  8. Duan, L. M., Blinov, B. B., Moehring, D. L. & Monroe, C. Scalable trapped ion quantum computation with a probabilistic ion-photon mapping. Quant. Inf. Comp. 4, 165–173 (2004).

    MathSciNet  MATH  Google Scholar 

  9. Moehring, D. L. et al. Quantum networking with photons and trapped atoms. J. Opt. Soc. Am. B 24, 300–315 (2007).

    Article  ADS  Google Scholar 

  10. Hong, C. K., Ou, Z. Y. & Mandel, L. Measurement of subpicosecond time intervals between two photons by interference. Phys. Rev. Lett. 59, 2044–2046 (1987).

    Article  ADS  Google Scholar 

  11. Kaltenbaek, R., Blauensteiner, B., Zukowski, M., Aspelmeyer, M. & Zeilinger, A. Experimental interference of independent photons. Phys. Rev. Lett. 96, 240502 (2006).

    Article  ADS  Google Scholar 

  12. Santori, C., Fattal, D., Vučković, J., Solomon, G. S. & Yamamoto, Y. Indistinguishable photons from a single-photon device. Nature 419, 594–597 (2002).

    Article  ADS  Google Scholar 

  13. Legero, T., Wilk, T., Hennrich, M., Rempe, G. & Kuhn, A. Quantum beat of two single photons. Phys. Rev. Lett. 93, 070503 (2004).

    Article  ADS  Google Scholar 

  14. Thompson, J. K., Simon, J., Loh, H. & Vuletic, V. A high-brightness source of narrowband, identical-photon pairs. Science 313, 74–77 (2006).

    Article  ADS  Google Scholar 

  15. Felinto, D. et al. Conditional control of the quantum states of remote atomic memories for quantum networking. Nature Phys. 2, 844–848 (2006).

    Article  ADS  Google Scholar 

  16. Chanelière, T. et al. Quantum interference of electromagnetic fields from remote quantum memories. Phys. Rev. Lett. 98, 113602 (2007).

    Article  ADS  Google Scholar 

  17. Beugnon, J. et al. Quantum interference between two single photons emitted by independently trapped atoms. Nature 440, 779–782 (2006).

    Article  ADS  Google Scholar 

  18. Briegel, H. J., Dür, W., Cirac, J. I. & Zoller, P. Quantum repeaters: The role of imperfect local operations in quantum communication. Phys. Rev. Lett. 81, 5932–5935 (1998).

    Article  ADS  Google Scholar 

  19. Raussendorf, R. & Briegel, H. J. A one-way quantum computer. Phys. Rev. Lett. 86, 5188–5191 (2001).

    Article  ADS  Google Scholar 

  20. Barrett, S. D. & Kok, P. Efficient high-fidelity quantum computation using matter qubits and linear optics. Phys. Rev. A 71, 060310 (2005).

    Article  ADS  Google Scholar 

  21. Duan, L. M. & Raussendorf, R. Efficient quantum computation with probabilistic quantum gates. Phys. Rev. Lett. 95, 080503 (2005).

    Article  ADS  MathSciNet  Google Scholar 

  22. Lim, Y. L., Beige, A. & Kwek, L. C. Repeat-until-success linear optics distributed quantum computing. Phys. Rev. Lett. 95, 030505 (2005).

    Article  ADS  Google Scholar 

  23. Duan, L. M. et al. Probabilistic quantum gates between remote atoms through interference of optical frequency qubits. Phys. Rev. A 73, 062324 (2006).

    Article  ADS  Google Scholar 

  24. Moehring, D. L. et al. Precision lifetime measurements of a single trapped ion with ultrafast laser pulses. Phys. Rev. A 73, 023413 (2006).

    Article  ADS  Google Scholar 

  25. Mandel, L. Quantum effects in one-photon and two-photon interference. Rev. Mod. Phys. 71, S274–S282 (1999).

    Article  Google Scholar 

  26. Blinov, B. B., Moehring, D. L., Duan, L. M. & Monroe, C. Observation of entanglement between a single trapped atom and a single photon. Nature 428, 153–157 (2004).

    Article  ADS  Google Scholar 

  27. Balzer, C. et al. Electrodynamically trapped Yb+ ions for quantum information processing. Phys. Rev. A 73, 041407 (2006).

    Article  ADS  Google Scholar 

  28. Yu, N. & Maleki, L. Lifetime measurements of the 4f145d metastable states in single ytterbium ions. Phys. Rev. A 61, 022507 (2000).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We acknowledge discussions with L.-M. Duan. This work is supported by the National Security Agency and the Disruptive Technology Office under Army Research Office contract W911NF-04-1-0234, and the National Science Foundation Information Technology Research (ITR) and Physics at the Information Frontier (PIF) programs.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Maunz.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maunz, P., Moehring, D., Olmschenk, S. et al. Quantum interference of photon pairs from two remote trapped atomic ions. Nature Phys 3, 538–541 (2007). https://doi.org/10.1038/nphys644

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nphys644

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing