Abstract
Trapped atomic ions are among the most attractive implementations of quantum bits for applications in quantum-information processing, owing to their long trapping lifetimes and long coherence times. Although nearby trapped ions can be entangled through their Coulomb-coupled motion1,2,3,4,5,6, it seems more natural to entangle remotely located ions through a coupling mediated by photons, eliminating the need to control the ion motion. A promising way to entangle ions via a photonic channel is to interfere two photons emitted from the ions and then detect appropriate photon coincidence events7,8,9. Here, we report the pivotal element of this scheme in the observation of quantum interference between pairs of single photons emitted from two atomic ions residing in independent traps.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to the full article PDF.
USD 39.95
Prices may be subject to local taxes which are calculated during checkout



Similar content being viewed by others
References
Cirac, J. I. & Zoller, P. Quantum computations with cold trapped ions. Phys. Rev. Lett. 74, 4091–4094 (1995).
Mølmer, K. & Sørensen, A. Multiparticle entanglement of hot trapped ions. Phys. Rev. Lett. 82, 1835–1838 (1999).
Milburn, G. J., Schneider, S. & James, D. F. V. Ion trap quantum computing with warm ions. Fortschr. Phys. 48, 801–810 (2000).
Sackett, C. A. et al. Experimental entanglement of four particles. Nature 404, 256–259 (2000).
Leibfried, D. et al. Creation of a six-atom ‘Schrödinger cat’ state. Nature 438, 639–642 (2005).
Häffner, H. et al. Scalable multiparticle entanglement of trapped ions. Nature 438, 643–646 (2005).
Simon, C. & Irvine, W. T. M. Robust long-distance entanglement and a loophole-free Bell test with ions and photons. Phys. Rev. Lett. 91, 110405 (2003).
Duan, L. M., Blinov, B. B., Moehring, D. L. & Monroe, C. Scalable trapped ion quantum computation with a probabilistic ion-photon mapping. Quant. Inf. Comp. 4, 165–173 (2004).
Moehring, D. L. et al. Quantum networking with photons and trapped atoms. J. Opt. Soc. Am. B 24, 300–315 (2007).
Hong, C. K., Ou, Z. Y. & Mandel, L. Measurement of subpicosecond time intervals between two photons by interference. Phys. Rev. Lett. 59, 2044–2046 (1987).
Kaltenbaek, R., Blauensteiner, B., Zukowski, M., Aspelmeyer, M. & Zeilinger, A. Experimental interference of independent photons. Phys. Rev. Lett. 96, 240502 (2006).
Santori, C., Fattal, D., Vučković, J., Solomon, G. S. & Yamamoto, Y. Indistinguishable photons from a single-photon device. Nature 419, 594–597 (2002).
Legero, T., Wilk, T., Hennrich, M., Rempe, G. & Kuhn, A. Quantum beat of two single photons. Phys. Rev. Lett. 93, 070503 (2004).
Thompson, J. K., Simon, J., Loh, H. & Vuletic, V. A high-brightness source of narrowband, identical-photon pairs. Science 313, 74–77 (2006).
Felinto, D. et al. Conditional control of the quantum states of remote atomic memories for quantum networking. Nature Phys. 2, 844–848 (2006).
Chanelière, T. et al. Quantum interference of electromagnetic fields from remote quantum memories. Phys. Rev. Lett. 98, 113602 (2007).
Beugnon, J. et al. Quantum interference between two single photons emitted by independently trapped atoms. Nature 440, 779–782 (2006).
Briegel, H. J., Dür, W., Cirac, J. I. & Zoller, P. Quantum repeaters: The role of imperfect local operations in quantum communication. Phys. Rev. Lett. 81, 5932–5935 (1998).
Raussendorf, R. & Briegel, H. J. A one-way quantum computer. Phys. Rev. Lett. 86, 5188–5191 (2001).
Barrett, S. D. & Kok, P. Efficient high-fidelity quantum computation using matter qubits and linear optics. Phys. Rev. A 71, 060310 (2005).
Duan, L. M. & Raussendorf, R. Efficient quantum computation with probabilistic quantum gates. Phys. Rev. Lett. 95, 080503 (2005).
Lim, Y. L., Beige, A. & Kwek, L. C. Repeat-until-success linear optics distributed quantum computing. Phys. Rev. Lett. 95, 030505 (2005).
Duan, L. M. et al. Probabilistic quantum gates between remote atoms through interference of optical frequency qubits. Phys. Rev. A 73, 062324 (2006).
Moehring, D. L. et al. Precision lifetime measurements of a single trapped ion with ultrafast laser pulses. Phys. Rev. A 73, 023413 (2006).
Mandel, L. Quantum effects in one-photon and two-photon interference. Rev. Mod. Phys. 71, S274–S282 (1999).
Blinov, B. B., Moehring, D. L., Duan, L. M. & Monroe, C. Observation of entanglement between a single trapped atom and a single photon. Nature 428, 153–157 (2004).
Balzer, C. et al. Electrodynamically trapped Yb+ ions for quantum information processing. Phys. Rev. A 73, 041407 (2006).
Yu, N. & Maleki, L. Lifetime measurements of the 4f145d metastable states in single ytterbium ions. Phys. Rev. A 61, 022507 (2000).
Acknowledgements
We acknowledge discussions with L.-M. Duan. This work is supported by the National Security Agency and the Disruptive Technology Office under Army Research Office contract W911NF-04-1-0234, and the National Science Foundation Information Technology Research (ITR) and Physics at the Information Frontier (PIF) programs.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Rights and permissions
About this article
Cite this article
Maunz, P., Moehring, D., Olmschenk, S. et al. Quantum interference of photon pairs from two remote trapped atomic ions. Nature Phys 3, 538–541 (2007). https://doi.org/10.1038/nphys644
Received:
Accepted:
Published:
Issue date:
DOI: https://doi.org/10.1038/nphys644
This article is cited by
-
Quantum interference of identical photons from remote GaAs quantum dots
Nature Nanotechnology (2022)
-
Concurrence and Negativity as a Family of Two Measures Elaborated for Pure Qudit States
Journal of Russian Laser Research (2017)
-
Heralded quantum repeater based on the scattering of photons off single emitters using parametric down-conversion source
Scientific Reports (2016)
-
Frequency-domain Hong–Ou–Mandel interference
Nature Photonics (2016)
-
Scalable digital hardware for a trapped ion quantum computer
Quantum Information Processing (2016)


