Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Satellite observations of separator-line geometry of three-dimensional magnetic reconnection

Abstract

Detection of a separator line that connects magnetic nulls and the determination of the dynamics and plasma environment of such a structure can improve our understanding of the three-dimensional (3D) magnetic reconnection process1,2,3,4,5,6,7,8,9. However, this type of field and particle configuration has not been directly observed in space plasmas. Here we report the identification of a pair of nulls, the null–null line that connects them, and associated fans and spines in the magnetotail of the Earth using data from the four Cluster spacecraft. With di and de designating the ion and electron inertial lengths, respectively, the separation between the nulls is found to be 0.7±0.3di and an associated oscillation is identified as a lower-hybrid wave with wavelength de. This in situ evidence of the full 3D reconnection geometry and associated dynamics provides an important step towards establishing an observational framework of 3D reconnection.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The 3D reconnection configuration.
Figure 2: The Cluster measurements and Poincaré index calculation in the reconnection event on 1 October 2001.
Figure 3: The null’s drift velocity and the lower-hybrid oscillation signatures.

Similar content being viewed by others

References

  1. Priest, E. R. & Forbes, T. G. Magnetic Reconnection: MHD Theory and Applications (Cambridge Univ. Press, New York, 2000).

    Book  Google Scholar 

  2. Greene, J. M. Geometrical properties of 3D reconnecting magnetic fields with nulls. J. Geophys. Res. 93, 8583–8590 (1988).

    Article  ADS  Google Scholar 

  3. Lau, Y.-T. & Finn, J. M. Three-dimensional kinematic reconnection in the presence of field nulls and closed field lines. Astrophys. J. 350, 672–691 (1990).

    Article  ADS  MathSciNet  Google Scholar 

  4. Priest, E. R. & Titov, V. S. Magnetic reconnection at three-dimensional null points. Phil. Trans. R. Soc. Lond. A 354, 2951–2992 (1996).

    Article  ADS  MathSciNet  Google Scholar 

  5. Scholer, M. et al. Onset of collisionless magnetic reconnection in thin current sheets: Three-dimensional particle simulations. Phys. Plasmas 10, 3521–3527 (2003).

    Article  ADS  Google Scholar 

  6. Jaroschek, C. H., Treumann, R. A., Lesch, H. & Scholer, M. Fast reconnection in relativistic pair plasmas: Analysis of particle acceleration in self-consistent full particle simulations. Phys. Plasmas 11, 1151–1157 (2004).

    Article  ADS  Google Scholar 

  7. Ji, H. et al. Electromagnetic fluctuations during fast reconnection in a laboratory plasma. Phys. Rev. Lett. 92, 115001 (2004).

    Article  ADS  Google Scholar 

  8. Pontin, D. I. & Craig, I. J. D. Dynamic three-dimensional reconnection in a separator geometry with two null points. Astrophys. J 642, 568–578 (2006).

    Article  ADS  Google Scholar 

  9. Xiao, C. J. et al. In situ evidence for the structure of the magnetic null in a 3D reconnection event in the Earth’s magnetotail. Nature Phys. 2, 478–483 (2006).

    Article  ADS  Google Scholar 

  10. Parnell, C. E., Smith, J. M., Neukirch, T. & Priest, E. R. The structure of three-dimensional magnetic neutral points. Phys. Plasmas 3, 759–770 (1996).

    Article  ADS  Google Scholar 

  11. Filippov, B. Observation of a 3D magnetic null point in the solar corona. Sol. Phys. 185, 297–309 (1999).

    Article  ADS  Google Scholar 

  12. Escoubet, C. P., Schmidt, R. & Goldstein, M. L. in The Cluster and Phoenix Missions (ed. Escoubet, C. P. et al.) 11–32 (Kluwer Academic, Dordrecht, 1997).

    Book  Google Scholar 

  13. Greene, J. M. Locating three-dimensional roots by a bisection method. J. Comput. Phys. 98, 194–198 (1992).

    Article  ADS  MathSciNet  Google Scholar 

  14. Zhao, H., Wang, J., Zhang, J. & Xiao, C. J. A new method of identifying 3D null points in solar vector magnetic fields. Chin. J. Astron. Astrophys. 5, 443–447 (2005).

    Article  ADS  Google Scholar 

  15. Balogh, A. et al. The cluster magnetic field investigation: Overview of in-flight performance and initial results. Ann. Geophys. 19, 1207–1217 (2001).

    Article  ADS  Google Scholar 

  16. Reme, H. et al. First multispacecraft ion measurements in and near the Earth’s magnetosphere with the identical Cluster ion spectrometry (CIS) experiment. Ann. Geophys. 19, 1303–1354 (2001).

    Article  ADS  Google Scholar 

  17. Runov, A. et al. Current sheet structure near magnetic X-line observed by cluster. Geophys. Res. Lett. 30, 1579 (2003).

    Article  ADS  Google Scholar 

  18. Wygant, J. R. et al. Cluster observations of an intense normal component of the electric field at a thin reconnecting current sheet in the tail and its role in the shock-like acceleration of the ion fluid into the separatrix region. J. Geophys. Res. 110, A09206 (2005).

    Article  ADS  Google Scholar 

  19. Wilber, M. et al. Cluster observations of velocity space-restricted ion distributions near the plasma sheet. Geophys. Res. Lett. 31, L24802 (2004).

    Article  ADS  Google Scholar 

  20. Cattell, C. et al. Cluster observations of electron holes in association with magnetotail reconnection and comparison to simulations. J. Geophys. Res. 110, A01211 (2004).

    ADS  Google Scholar 

  21. Birn, J. et al. Geospace environmental modeling (GEM) magnetic reconnection challenge. J. Geophys. Res. 106, 3715–3719 (2001).

    Article  ADS  Google Scholar 

  22. Øieroset, M. et al. In situ detection of collisionless reconnection in the earth’s magnetotail. Nature 412, 414–417 (2001).

    Article  ADS  Google Scholar 

  23. Deimling, A. Nonlinear Functional analysis (Spring, New York, 1985).

    Book  Google Scholar 

  24. Dunlop, M. W., Southwood, D. J., Glassmeier, K.-H. & Neubauer, F. M. Analysis of multipoint magnetometer. Adv. Space Res. 8, 273–277 (1988).

    Article  ADS  Google Scholar 

  25. Chanteur, G. in Analysis Methods for Multi-Spacecraft Data (eds Paschmann, G. & Daly, P. W.) 349–369 (ESA Publications Division, Noordwijk, 1998).

    Google Scholar 

  26. Bale, S. D., Mozer, F. S. & Phan, T. Observation of lower hybrid drift instability in the diffusion region at a reconnecting magnetopause. Geophys. Res. Lett. 29, 2180 (2002).

    Article  ADS  Google Scholar 

  27. Vaivads, A. et al. Cluster observations of lower hybrid turbulence within thin layers at the magnetopause. Geophys. Res. Lett. 31, L03804 (2004).

    Article  ADS  Google Scholar 

  28. Carter, T. A. et al. Measurement of lower-hybrid drift turbulence in a reconnecting current sheet. Phys. Rev. Lett. 88, 015001 (2002).

    Article  ADS  Google Scholar 

  29. Chaston, C. C. et al. Drift-kinetic alfvén waves observed near a reconnection X line in the earth’s magnetopause. Phys. Rev. Lett. 95, 065002 (2005).

    Article  ADS  Google Scholar 

  30. Grinsted, A., Moore, J. C. & Jevrejeva, S. Application of the cross wavelet transform and wavelet coherence to geophysical time series. Nonlinear Processes Geophys. 11, 561–566 (2004).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work is supported by the NSFC Programs (grant Nos 40390150, 40504021, 10233050, 10575018, 40536030, 40425004 and 40228006) and the National Basic Research Programme of China (grant No 2006CB806300), as well as the CAS Project KJCX2-YW-T04 and the China Double Star-Cluster Science Team. C.J.X. also thanks A. Grinsted at the University of Lapland for supporting the MatLab wavelet coherence package.

Author information

Authors and Affiliations

Authors

Contributions

C.J.X., X.G.W., and Z.Y.P. are first authors with equal contributions to theoretical and data analysis. Z.W.M. has also made important contributions to the paper, and H.Z., G.P.Z. and J.X.W. have developed analysis tools and participated in the analysis. Other coauthors have provided the Cluster observation data and been involved in discussions. M.G.K. has also made significant contributions to the final revision of the paper.

Corresponding authors

Correspondence to C. J. Xiao or Z. Y. Pu.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xiao, C., Wang, X., Pu, Z. et al. Satellite observations of separator-line geometry of three-dimensional magnetic reconnection. Nature Phys 3, 609–613 (2007). https://doi.org/10.1038/nphys650

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nphys650

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing