Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A Kapitza–Dirac–Talbot–Lau interferometer for highly polarizable molecules

Abstract

Research on matter waves is a thriving field of quantum physics and has recently stimulated many investigations with electrons1, neutrons2, atoms3, Bose-condensed ensembles4, cold clusters5 and hot molecules6. Coherence experiments with complex objects are of interest for exploring the transition to classical physics7,8,9, for measuring molecular properties10, and they have even been proposed for testing new models of space-time11. For matter-wave experiments with complex molecules, the strongly dispersive effect of the interaction between the diffracted molecule and the grating wall is a major challenge because it imposes enormous constraints on the velocity selection of the molecular beam12. Here, we describe the first experimental realization of a new set-up that solves this problem by combining the advantages of a so-called Talbot–Lau interferometer13 with the benefits of an optical phase grating.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Numerical prediction of the interference fringe visibility as a function of the de Broglie wavelength: comparison of the TLI and the KDTLI for molecules of different complexity.
Figure 2: Schematic diagram of the KDTLI.
Figure 3: Typical interference patterns observed in KDTL interferometry.
Figure 4: Dependence of the interference fringe contrast on the diffracting laser power.

Similar content being viewed by others

References

  1. Ji, Y. et al. An electronic Mach–Zehnder interferometer. Nature 422, 415–418 (2003).

    Article  ADS  Google Scholar 

  2. Hasegawa, Y., Loidl, R., Badurek, G., Baron, M. & Rauch, H. Violation of a Bell-like inequality in single neutron interferometry. Nature 425, 45–48 (2003).

    Article  ADS  Google Scholar 

  3. Schumm, T. et al. Matter-wave interferometry in a double well on an atom chip. Nature Phys. 1, 57–62 (2005).

    Article  ADS  Google Scholar 

  4. Pethick, C. J. & Smith, H. Bose–Einstein Condensation in Dilute Gases (Cambridge Univ. Press, Cambridge, 2002).

    Google Scholar 

  5. Schöllkopf, W. & Toennies, J. P. Nondestructive mass selection of small van der Waals clusters. Science 266, 1345–1348 (1994).

    Article  ADS  Google Scholar 

  6. Arndt, M. et al. Wave-particle duality of C60 molecules. Nature 401, 680–682 (1999).

    Article  ADS  Google Scholar 

  7. Giulini, D. et al. Decoherence and the Appearance of a Classical World in Quantum Theory (Springer, Berlin, 1996).

    Book  Google Scholar 

  8. Zurek, W. H. Decoherence, einselection, and the quantum origins of the classical. Rev. Mod. Phys. 75, 715–775 (2003).

    Article  ADS  MathSciNet  Google Scholar 

  9. Hackermüller, L., Hornberger, K., Brezger, B., Zeilinger, A. & Arndt, M. Decoherence of matter waves by thermal emission of radiation. Nature 427, 711–714 (2004).

    Article  ADS  Google Scholar 

  10. Deachapunya, S. et al. Thermal and electrical properties of porphyrin derivatives and their relevance for molecule interferometry. J. Chem. Phys. 126, 164304 (2007).

    Article  ADS  Google Scholar 

  11. Wang, C.H.-T., Bingham, R. & Mendonca, J. T. Quantum gravitational decoherence of matter waves. Class. Quant. Grav. 23, L59–L65 (2006).

    Article  MathSciNet  Google Scholar 

  12. Brezger, B., Arndt, M. & Zeilinger, A. Concepts for near-field interferometers with large molecules. J. Opt. B 5, S82–S89 (2003).

    Article  ADS  Google Scholar 

  13. Clauser, J. F. in Experimental Metaphysics (eds Cohen, R. S., Horne, M. & Stachel, J.) 1–11 (Kluwer Academic, New York, 1997).

    Google Scholar 

  14. Gronniger, G. et al. Electron diffraction from free-standing, metal-coated transmission gratings. Appl. Phys. Lett. 87, 124104 (2005).

    Article  ADS  Google Scholar 

  15. Keith, D. W., Ekstrom, C. R., Turchette, Q. A. & Pritchard, D. E. An interferometer for atoms. Phys. Rev. Lett. 66, 2693–2696 (1991).

    Article  ADS  Google Scholar 

  16. Carnal, O. & Mlynek, J. Young’s double-slit experiment with atoms: A simple atom interferometer. Phys. Rev. Lett. 66, 2689–2692 (1991).

    Article  ADS  Google Scholar 

  17. Chapman, M. S. et al. Optics and interferometry with Na2 molecules. Phys. Rev. Lett. 74, 4783–4786 (1995).

    Article  ADS  Google Scholar 

  18. Freimund, D. L., Aflatooni, K. & Batelaan, H. Observation of the Kapitza–Dirac effect. Nature 413, 142–143 (2001).

    Article  ADS  Google Scholar 

  19. Gould, P. L., Ruff, G. A. & Pritchard, D. E. Diffraction of atoms by light: The near-resonant Kapitza–Dirac effect. Phys. Rev. Lett. 56, 827–830 (1986).

    Article  ADS  Google Scholar 

  20. Nairz, O., Brezger, B., Arndt, M. & Zeilinger, A. Diffraction of complex molecules by structures made of light. Phys. Rev. Lett. 87, 160401 (2001).

    Article  ADS  Google Scholar 

  21. Cronin, A. D. & McMorran, B. Electron interferometry with nanogratings. Phys. Rev. A 74, 061602(R) (2006).

    Article  ADS  Google Scholar 

  22. Cahn, S. B. et al. Time-domain de Broglie wave interferometry. Phys. Rev. Lett. 79, 784–787 (1997).

    Article  ADS  Google Scholar 

  23. Brezger, B. et al. A matter-wave interferometer for large molecules. Phys. Rev. Lett. 88, 100404 (2002).

    Article  ADS  Google Scholar 

  24. Casimir, H. B. G. & Polder, D. The influence of retardation on the London–van der Waals forces. Phys. Rev. 73, 360–372 (1948).

    Article  ADS  Google Scholar 

  25. Brühl, R. et al. The van der Waals potential between metastable atoms and solid surfaces: Novel diffraction experiments vs. theory. Europhys. Lett. 59, 357–363 (2002).

    Article  ADS  Google Scholar 

  26. Fagan, P. J. et al. Production of perfluoroalkylated nanospheres from buckminsterfullerene. Science 262, 404–407 (1993).

    Article  ADS  Google Scholar 

  27. Gotsche, N., Ulbricht, H. & Arndt, M. UV–VIS absorption spectroscopy of large molecules for applications in matter wave interferometry. Laser Phys. 17, 583–589 (2007).

    Article  ADS  Google Scholar 

  28. Hornberger, K., Sipe, J. E. & Arndt, M. Theory of decoherence in a matter wave Talbot–Lau interferometer. Phys. Rev. A 70, 053608 (2004).

    Article  ADS  Google Scholar 

  29. Savas, T. A., Schattenburg, M. L., Carter, J. M. & Smith, H. I. Large-area achromatic interferometric lithography for 100 nm period gratings and grids. J. Vac. Sci. Technol. B 14, 4167–4170 (1996).

    Article  Google Scholar 

  30. Tamai, N. & Miyasaka, H. Ultrafast dynamics of photochromic systems. Chem. Rev. 100, 1875–1890 (2000).

    Article  Google Scholar 

Download references

Acknowledgements

The project is supported by the Austrian FWF within the projects START Y177-2 and SFB F1505 and by the European Commission within the RTN network HPRN-CT-2002-00309. K.H. acknowledges support by the DFG Emmy-Noether program. M.M. and M.M. acknowledge support from the Swiss National Science Foundation (SNSF) and the Innovation Promotion Agency (CTI). We thank A. Zeilinger for lending us a continuous-wave laser.

Author information

Authors and Affiliations

Authors

Contributions

The interferometry work was carried out by S.G., L.H., A.S., H.U., M.G., F.G. and M.A. Analysis was carried out by K.H. and S.G. The nanogratings were prepared by T.S. in collaboration with L.H. S.G. and L.H. contributed equally to the experiment. M.M. and M.M. designed, synthesized and characterized the fluorinated azobenzene derivative with high vapour pressure.

Corresponding authors

Correspondence to Lucia Hackermüller, Alexander Stibor, Fabienne Goldfarb or Markus Arndt.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gerlich, S., Hackermüller, L., Hornberger, K. et al. A Kapitza–Dirac–Talbot–Lau interferometer for highly polarizable molecules. Nature Phys 3, 711–715 (2007). https://doi.org/10.1038/nphys701

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nphys701

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing