Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Optically detected coherent spin dynamics of a single electron in a quantum dot

Abstract

The ability to sequentially initialize, manipulate and read out the state of a qubit, such as an electron spin in a quantum dot (QD), is a requirement in virtually any scheme for quantum information processing1,2,3. However, previous optical measurements of a single electron spin have focused on time-averaged detection, with the spin being initialized and read out continuously4,5,6,7,8. Here, we monitor the coherent evolution of an electron spin in a single QD. We use time-resolved Kerr rotation (KR) spectroscopy, an all-optical, non-destructive technique that enables us to monitor the precession of the spin in a superposition of Zeeman-split sublevels with nanosecond time resolution. The data show an exponential decay of the spin polarization with time, and directly reveal the g-factor and spin lifetime of the electron in the QD. Furthermore, the observed spin dynamics provide a sensitive probe of the local nuclear spin environment.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Experimental set-up for single-spin detection.
Figure 2: Coherent evolution of a single electron spin.
Figure 3: Magnetic-field dependence.
Figure 4: Probing the nuclear-spin environment.

Similar content being viewed by others

References

  1. Loss, D. & DiVincenzo, D. P. Quantum computation with quantum dots. Phys. Rev. A 57, 120–126 (1998).

    Article  ADS  Google Scholar 

  2. Awschalom, D. D., Loss, D. & Samarth, N. (eds) Semiconductor Spintronics and Quantum Computation (Springer, Berlin, 2002).

  3. Hanson, R., Kouwenhoven, L. P., Petta, J. R., Tarucha, S. & Vandersypen, L. M. K. Spins in few-electron quantum dots. Rev. Mod. Phys. (in the press); preprint at <http://arxiv.org/abs/cond-mat/0610433> (2006).

  4. Berezovsky, J. et al. Nondestructive optical measurements of a single electron spin in a quantum dot. Science 314, 1916–1920 (2006).

    Article  ADS  Google Scholar 

  5. Atatüre, M., Dreiser, J., Badolato, A. & Imamoglu, A. Observation of Faraday rotation from a single confined spin. Nature Phys. 3, 101–105 (2007).

    Article  ADS  Google Scholar 

  6. Bracker, A. S. et al. Optical pumping of the electronic and nuclear spin of single charge-tunable quantum dots. Phys. Rev. Lett. 94, 047402 (2005).

    Article  ADS  Google Scholar 

  7. Ebbens, A. et al. Optical orientation and control of spin memory in individual InGaAs quantum dots. Phys. Rev. B 72, 073307 (2005).

    Article  ADS  Google Scholar 

  8. Högele, A. et al. Spin-selective optical absorption of singly charged excitons in a quantum dot. Appl. Phys. Lett. 86, 221905 (2005).

    Article  ADS  Google Scholar 

  9. Meier, F. & Awschalom, D. D. Faraday rotation spectroscopy of quantum-dot quantum wells. Phys. Rev. B 71, 205315 (2005).

    Article  ADS  Google Scholar 

  10. Warburton, R. J. et al. Optical emission from a charge-tunable quantum ring. Nature 405, 926–929 (2000).

    Article  ADS  Google Scholar 

  11. Meier, F. & Zakharchenya, B. P. (eds) Optical Orientation: Modern Problems in Condensed Matter Sciences (North Holland, Amsterdam, 1984).

  12. Bracker, A. S. et al. Binding energies of positive and negative trions: From quantum wells to quantum dots. Phys. Rev. B 72, 035332 (2005).

    Article  ADS  Google Scholar 

  13. Dzhioev, R. I. et al. Optical orientation and the Hanle effect of neutral and negatively charged excitons in GaAs/AlxGa1−xAs quantum wells. Phys. Rev. B 66, 153409 (2002).

    Article  ADS  Google Scholar 

  14. Dutt, M. V. G. et al. Stimulated and spontaneous optical generation of electron spin coherence in charged GaAs quantum dots. Phys. Rev. Lett. 94, 227403 (2005).

    Article  ADS  Google Scholar 

  15. Khaetskii, A. V., Loss, D. & Glazman, L. Electron spin decoherence in quantum dots due to interaction with nuclei. Phys. Rev. Lett. 88, 186802 (2002).

    Article  ADS  Google Scholar 

  16. Merkulov, I. A., Efros, Al. L. & Rosen, M. Electron spin relaxation by nuclei in semiconductor quantum dots. Phys. Rev. B 65, 205309 (2002).

    Article  ADS  Google Scholar 

  17. Gammon, D., Snow, E. S., Shanabrook, B. V., Katzer, D. S. & Park, D. Fine structure splitting in the optical spectra of single GaAs quantum dots. Phys. Rev. Lett. 76, 3005–3008 (1996).

    Article  ADS  Google Scholar 

  18. Semenov, Y. G. & Kim, K. W. Phonon-mediated electron-spin phase diffusion in a quantum dot. Phys. Rev. Lett. 92, 026601 (2004).

    Article  ADS  Google Scholar 

  19. Golovach, V. N., Khaetskii, A. & Loss, D. Phonon-induced decay of the electron spin in quantum dots. Phys. Rev. Lett. 93, 016601 (2004).

    Article  ADS  Google Scholar 

  20. Khaetskii, A. V. & Nazarov, Y. V. Spin-flip transitions between Zeeman sublevels in semiconductor quantum dots. Phys. Rev. B 64, 125316 (2001).

    Article  ADS  Google Scholar 

  21. Erlingsson, S. I., Nazarov, Y. V. & Fal’ko, V. I. Nucleus-mediated spin-flip transitions in GaAs quantum dots. Phys. Rev. B 64, 195306 (2001).

    Article  ADS  Google Scholar 

  22. Salis, G., Awschalom, D. D., Ohno, Y. & Ohno, H. Origin of enhanced dynamic nuclear polarization and all-optical nuclear magnetic resonance in GaAs quantum wells. Phys. Rev. B 64, 195304 (2001).

    Article  ADS  Google Scholar 

  23. Gammon, D. et al. Electron and nuclear spin interactions in the optical spectra of single GaAs quantum dots. Phys. Rev. Lett. 86, 5176–5179 (2001).

    Article  ADS  Google Scholar 

  24. Meier, F. & Awschalom, D. D. Spin-photon dynamics of quantum dots in two-mode cavities. Phys. Rev. B 70, 205329 (2004).

    Article  ADS  Google Scholar 

  25. Leuenberger, M. N. Fault-tolerant quantum computing with coded spins using the conditional Faraday rotation in quantum dots. Phys. Rev. B 73, 075312 (2006).

    Article  ADS  Google Scholar 

  26. Zrenner, A. et al. Quantum dots formed by interface fluctuations in a AlAs/GaAs coupled quantum well structures. Phys. Rev. Lett. 72, 3382 (1994).

    Article  ADS  Google Scholar 

  27. Gammon, D., Snow, E. S., Shanabrook, B. V., Katzer, D. S. & Park, D. Homogeneous linewidths in the optical spectrum of a single gallium arsenide quantum dot. Science 273, 87–90 (1996).

    Article  ADS  Google Scholar 

  28. Salis, G. & Moser, M. Faraday-rotation spectrum of electron spins in a microcavity-embedded GaAs quantum wells. Phys. Rev. B 72, 115325 (2005).

    Article  ADS  Google Scholar 

  29. Li, Y. Q. et al. Cavity enhanced Faraday rotation of semiconductor quantum dots. Appl. Phys. Lett. 88, 193126 (2006).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We acknowledge support from NSF and the Air Force Office of Scientific Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. D. Awschalom.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mikkelsen, M., Berezovsky, J., Stoltz, N. et al. Optically detected coherent spin dynamics of a single electron in a quantum dot. Nature Phys 3, 770–773 (2007). https://doi.org/10.1038/nphys736

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nphys736

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing