Abstract
The ability to sequentially initialize, manipulate and read out the state of a qubit, such as an electron spin in a quantum dot (QD), is a requirement in virtually any scheme for quantum information processing1,2,3. However, previous optical measurements of a single electron spin have focused on time-averaged detection, with the spin being initialized and read out continuously4,5,6,7,8. Here, we monitor the coherent evolution of an electron spin in a single QD. We use time-resolved Kerr rotation (KR) spectroscopy, an all-optical, non-destructive technique that enables us to monitor the precession of the spin in a superposition of Zeeman-split sublevels with nanosecond time resolution. The data show an exponential decay of the spin polarization with time, and directly reveal the g-factor and spin lifetime of the electron in the QD. Furthermore, the observed spin dynamics provide a sensitive probe of the local nuclear spin environment.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout




Similar content being viewed by others
References
Loss, D. & DiVincenzo, D. P. Quantum computation with quantum dots. Phys. Rev. A 57, 120–126 (1998).
Awschalom, D. D., Loss, D. & Samarth, N. (eds) Semiconductor Spintronics and Quantum Computation (Springer, Berlin, 2002).
Hanson, R., Kouwenhoven, L. P., Petta, J. R., Tarucha, S. & Vandersypen, L. M. K. Spins in few-electron quantum dots. Rev. Mod. Phys. (in the press); preprint at <http://arxiv.org/abs/cond-mat/0610433> (2006).
Berezovsky, J. et al. Nondestructive optical measurements of a single electron spin in a quantum dot. Science 314, 1916–1920 (2006).
Atatüre, M., Dreiser, J., Badolato, A. & Imamoglu, A. Observation of Faraday rotation from a single confined spin. Nature Phys. 3, 101–105 (2007).
Bracker, A. S. et al. Optical pumping of the electronic and nuclear spin of single charge-tunable quantum dots. Phys. Rev. Lett. 94, 047402 (2005).
Ebbens, A. et al. Optical orientation and control of spin memory in individual InGaAs quantum dots. Phys. Rev. B 72, 073307 (2005).
Högele, A. et al. Spin-selective optical absorption of singly charged excitons in a quantum dot. Appl. Phys. Lett. 86, 221905 (2005).
Meier, F. & Awschalom, D. D. Faraday rotation spectroscopy of quantum-dot quantum wells. Phys. Rev. B 71, 205315 (2005).
Warburton, R. J. et al. Optical emission from a charge-tunable quantum ring. Nature 405, 926–929 (2000).
Meier, F. & Zakharchenya, B. P. (eds) Optical Orientation: Modern Problems in Condensed Matter Sciences (North Holland, Amsterdam, 1984).
Bracker, A. S. et al. Binding energies of positive and negative trions: From quantum wells to quantum dots. Phys. Rev. B 72, 035332 (2005).
Dzhioev, R. I. et al. Optical orientation and the Hanle effect of neutral and negatively charged excitons in GaAs/AlxGa1−xAs quantum wells. Phys. Rev. B 66, 153409 (2002).
Dutt, M. V. G. et al. Stimulated and spontaneous optical generation of electron spin coherence in charged GaAs quantum dots. Phys. Rev. Lett. 94, 227403 (2005).
Khaetskii, A. V., Loss, D. & Glazman, L. Electron spin decoherence in quantum dots due to interaction with nuclei. Phys. Rev. Lett. 88, 186802 (2002).
Merkulov, I. A., Efros, Al. L. & Rosen, M. Electron spin relaxation by nuclei in semiconductor quantum dots. Phys. Rev. B 65, 205309 (2002).
Gammon, D., Snow, E. S., Shanabrook, B. V., Katzer, D. S. & Park, D. Fine structure splitting in the optical spectra of single GaAs quantum dots. Phys. Rev. Lett. 76, 3005–3008 (1996).
Semenov, Y. G. & Kim, K. W. Phonon-mediated electron-spin phase diffusion in a quantum dot. Phys. Rev. Lett. 92, 026601 (2004).
Golovach, V. N., Khaetskii, A. & Loss, D. Phonon-induced decay of the electron spin in quantum dots. Phys. Rev. Lett. 93, 016601 (2004).
Khaetskii, A. V. & Nazarov, Y. V. Spin-flip transitions between Zeeman sublevels in semiconductor quantum dots. Phys. Rev. B 64, 125316 (2001).
Erlingsson, S. I., Nazarov, Y. V. & Fal’ko, V. I. Nucleus-mediated spin-flip transitions in GaAs quantum dots. Phys. Rev. B 64, 195306 (2001).
Salis, G., Awschalom, D. D., Ohno, Y. & Ohno, H. Origin of enhanced dynamic nuclear polarization and all-optical nuclear magnetic resonance in GaAs quantum wells. Phys. Rev. B 64, 195304 (2001).
Gammon, D. et al. Electron and nuclear spin interactions in the optical spectra of single GaAs quantum dots. Phys. Rev. Lett. 86, 5176–5179 (2001).
Meier, F. & Awschalom, D. D. Spin-photon dynamics of quantum dots in two-mode cavities. Phys. Rev. B 70, 205329 (2004).
Leuenberger, M. N. Fault-tolerant quantum computing with coded spins using the conditional Faraday rotation in quantum dots. Phys. Rev. B 73, 075312 (2006).
Zrenner, A. et al. Quantum dots formed by interface fluctuations in a AlAs/GaAs coupled quantum well structures. Phys. Rev. Lett. 72, 3382 (1994).
Gammon, D., Snow, E. S., Shanabrook, B. V., Katzer, D. S. & Park, D. Homogeneous linewidths in the optical spectrum of a single gallium arsenide quantum dot. Science 273, 87–90 (1996).
Salis, G. & Moser, M. Faraday-rotation spectrum of electron spins in a microcavity-embedded GaAs quantum wells. Phys. Rev. B 72, 115325 (2005).
Li, Y. Q. et al. Cavity enhanced Faraday rotation of semiconductor quantum dots. Appl. Phys. Lett. 88, 193126 (2006).
Acknowledgements
We acknowledge support from NSF and the Air Force Office of Scientific Research.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Mikkelsen, M., Berezovsky, J., Stoltz, N. et al. Optically detected coherent spin dynamics of a single electron in a quantum dot. Nature Phys 3, 770–773 (2007). https://doi.org/10.1038/nphys736
Received:
Accepted:
Published:
Issue date:
DOI: https://doi.org/10.1038/nphys736
This article is cited by
-
Photonic transistor and router using a single quantum-dot-confined spin in a single-sided optical microcavity
Scientific Reports (2017)
-
Longitudinal wave function control in single quantum dots with an applied magnetic field
Scientific Reports (2015)
-
Coherent manipulation, measurement and entanglement of individual solid-state spins using optical fields
Nature Photonics (2015)
-
Macroscopic rotation of photon polarization induced by a single spin
Nature Communications (2015)
-
Nondestructive photonic polarization Greenberger–Horne–Zeilinger states analyzer assisted by quantum-dot cavity systems
Quantum Information Processing (2014)