Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Generation of intense continuum extreme-ultraviolet radiation by many-cycle laser fields

Abstract

Continuing efforts in ultrashort pulse engineering have recently led to the breakthroughs of the generation of attosecond (10−18 s) pulse trains1,2,3,4,5,6,7 and isolated pulses8,9,10,11. Although trains of multiple pulses can be generated through the interaction of many-optical-cycle pulses with gases—a process that has led to intense extreme-ultraviolet emission3,4,5—the generation of isolated high-intensity pulses, which requires few-cycle driving pulses, remains a challenge. Here, we report a vital step towards the generation of such pulses, the production of broad continuum extreme-ultraviolet emission using a high-intensity, many-cycle, infrared pulsed laser, through the interferometric modulation of the ellipticity of 50-fs-long driving pulses. The increasing availability of high-power many-cycle lasers and their potential use in the construction of intense attosecond radiation—with either gas or solid-surface targets12—offer exciting opportunities for multiphoton extreme-ultraviolet-pump–extreme-ultraviolet-probe studies of laser–matter and laser–plasma interactions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Dual Michelson interferometer device.
Figure 2: Polarization gating parameter definitions and gate specifications.
Figure 3: Generation of a continuum extreme-ultraviolet spectrum with a 5 fs gate width.
Figure 4: Dependence of the extreme-ultraviolet spectrum on the CEP of the laser pulse.

Similar content being viewed by others

References

  1. Hansch, T. W. A proposed sub-femtosecond pulse synthesizer using separate phase-locked laser oscillators. Opt. Commun. 80, 71–75 (1990).

    Article  ADS  Google Scholar 

  2. Farkas, Gy. & Toth, Cs. Proposal for attosecond light pulse generation using laser induced multiple-harmonic conversion processes in rare gases. Phys. Rev. A 168, 447–450 (1992).

    Google Scholar 

  3. Tzallas, P. et al. Direct observation of attosecond light bunching. Nature 426, 267–271 (2003).

    Article  ADS  Google Scholar 

  4. Nabekawa, Y. et al. Interferometric autocorrelation of an attosecond pulse train in the single-cycle regime. Phys. Rev. Lett. 97, 153904 (2006).

    Article  ADS  Google Scholar 

  5. Nabekawa, Y. et al. Conclusive evidence of an attosecond pulse train observed with the mode-resolved autocorrelation technique. Phys. Rev. Lett. 96, 083901 (2005).

    Article  ADS  Google Scholar 

  6. Paul, P. M. et al. Observation of train of attosecond pulses from high harmonic generation. Science 292, 1689–1692 (2001).

    Article  ADS  Google Scholar 

  7. Mairesse, Y. et al. Attosecond synchronization of high-harmonic soft X-rays. Science 302, 1540–1543 (2003).

    Article  ADS  Google Scholar 

  8. Hentschel, M. et al. Attosecond metrology. Nature 414, 509–513 (2002).

    Article  ADS  Google Scholar 

  9. Kienberger, R. et al. Atomic transient recorder. Nature 427, 817–821 (2004).

    Article  ADS  Google Scholar 

  10. Sansone, G. et al. Isolated single-cycle attosecond pulses. Science 314, 443–446 (2006).

    Article  ADS  Google Scholar 

  11. Sola, I. J. et al. Controlling attosecond electron dynamics by phase-stabilized polarization gating. Nature Phys. 2, 319–322 (2006).

    Article  ADS  Google Scholar 

  12. Baeva, T., Gordienko, S. & Pukhov, A. Relativistic plasma control for single attosecond x-ray burst generation. Phys. Rev. E 74, 065401(R) (2006).

    Article  ADS  Google Scholar 

  13. Corkum, P. B. Plasma prospective on strong-field multiphoton ionization. Phys. Rev. Lett. 71, 1994–1997 (1993).

    Article  ADS  Google Scholar 

  14. Lewenstein, M. et al. Theory of high harmonic generation by low-frequency laser fields. Phys. Rev. A 49, 2117–2132 (1994).

    Article  ADS  Google Scholar 

  15. Kobayashi, Y. et al. 27-fs extreme ultraviolet pulse generation by high order harmonics. Opt. Lett. 23, 64–66 (1998).

    Article  ADS  Google Scholar 

  16. Papadogiannis, N. A. et al. Two XUV-photon ionization of He through a superposition of higher harmonics. Phys. Rev. Lett. 90, 133902 (2003).

    Article  ADS  Google Scholar 

  17. Nikolopoulos, L. A. A. et al. Second order autocorrelation of an XUV attosecond pulse train. Phys. Rev. Lett. 94, 113905 (2005).

    Article  ADS  Google Scholar 

  18. Sekikawa, T. et al. Nonlinear optics in the extreme ultraviolet. Nature 432, 605–608 (2004).

    Article  ADS  Google Scholar 

  19. Nabekawa, Y. et al. Production of doubly charged helium ions by two-photon absorption of an intense sub-10-fs soft X-ray pulse at 42 eV photon energy. Phys. Rev. Lett. 94, 043001 (2005).

    Article  ADS  Google Scholar 

  20. Benis, E. P. et al. Frequency-resolved photoelectron spectra of two-photon ionization of He by an attosecond pulse train. New J. Phys. 8, 92 (2006).

    Article  ADS  Google Scholar 

  21. Benis, E. P. et al. Two-photon double ionization of rare gases by a superposition of harmonics. Phys. Rev. A 74, 051402(R) (2006).

    Article  ADS  Google Scholar 

  22. Miyamoto, N. et al. Observation of two-photon above-threshold ionization of rare gases by XUV harmonic photons. Phys. Rev. Lett. 93, 083903 (2004).

    Article  ADS  Google Scholar 

  23. Corkum, P. B., Burnett, N. H. & Ivanov, M. Y. Subfemtosecond pulses. Opt. Lett. 19, 1870–1872 (1994).

    Article  ADS  Google Scholar 

  24. Baltuska, A. et al. Attosecond control of electronic processes by intense light fields. Nature 421, 611–615 (2003).

    Article  ADS  Google Scholar 

  25. Tcherbakoff, O. et al. Time-gated high-order harmonic generation. Phys. Rev. A 68, 043804 (2003).

    Article  ADS  Google Scholar 

  26. Tsakiris, G. D. et al. Route to intense single attosecond pulses. New J. Phys. 8, 19 (2006).

    Article  ADS  Google Scholar 

  27. Antoine, P., L’Huillier, A. & Lewenstein, M. Attosecond pulse trains using high-order harmonics. Phys. Rev. Lett. 77, 1234–1237 (1996).

    Article  ADS  Google Scholar 

  28. Gaarde, M. B. & Schafer, K. J. Space-time considerations in the phase locking of high harmonics. Phys. Rev. Lett. 89, 213901 (2002).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work is supported in part by the European Community’s Human Potential Program under contract MRTN-CT-2003-505138 (XTRA); MTKD-CT-2004-517145 (X-HOMES); the Ultraviolet Laser Facility (ULF) operating at FORTH-IESL (contract no. HPRI-CT-2001-00139) and the P14 COST programme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Tzallas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tzallas, P., Skantzakis, E., Kalpouzos, C. et al. Generation of intense continuum extreme-ultraviolet radiation by many-cycle laser fields. Nature Phys 3, 846–850 (2007). https://doi.org/10.1038/nphys747

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nphys747

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing