Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Surface heating of wire plasmas using laser-irradiated cone geometries

Abstract

Petawatt lasers can generate extreme states of matter, making them unique tools for high-energy-density physics. Pressures in the gigabar regime can potentially be generated with cone-wire targets when the coupling efficiency is high and temperatures reach 2–4 keV (ref. 1). The only other method of obtaining such gigantic pressures is to use the megajoule laser facilities being constructed (National Ignition Facility and Laser MégaJoule). The energy can be transported over surprisingly long distances but, until now, the guiding mechanism has remained unclear. Here, we present the first definitive experimental proof that the heating is maximized close to the wire surface, by comparison of interferometric measurements with hydrodynamic simulations. New hybrid particle-in-cell simulations show the complex field structures for the first time, including a reversal of the magnetic field on the inside of the wire. This increases the return current in a spatially separated thin layer below the wire surface, resulting in the enhanced level of ohmic heating. There are a significant number of applications in high-energy-density science, ranging from equation-of-state studies to bright, hard X-ray sources, that will benefit from this new understanding of energy transport.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Interferogram of a cone-wire target that was used to calculate plasma densities from the observed phase shifts.
Figure 2: A comparison of computational and experimental radial density profiles for 7-μm-diameter copper wire 400 μm from the cone tip.
Figure 3: LSP modelling of the azimuthal magnetic field structure at the cone tip, 600 fs after the main interaction.
Figure 4: LSP modelling of the net current density inside the wire, 600 fs after the main interaction.

Similar content being viewed by others

References

  1. Kodama, R. et al. Plasma devices to guide and collimate a high density of MeV electrons. Nature 432, 1005–1008 (2004).

    Article  ADS  Google Scholar 

  2. Kodama, R. et al. Fast heating of ultrahigh-density plasma as a step towards laser fusion ignition. Nature 412, 798–802 (2001).

    Article  ADS  Google Scholar 

  3. Kodama, R. et al. Nuclear fusion—fast heating scalable to laser fusion ignition. Nature 418, 933–934 (2002).

    Article  ADS  Google Scholar 

  4. Tabak, M. et al. Ignition and high gain with ultrapowerful lasers. Phys. Plasmas 1, 1626–1634 (1994).

    Article  ADS  Google Scholar 

  5. Norreys, P. A. et al. Experimental studies of the advanced fast ignitor scheme. Phys. Plasmas 7, 3721–3726 (2000).

    Article  ADS  Google Scholar 

  6. Gremillet, L., Bonnaud, G. & Amiranoff, F. Filamented transport of laser generated relativistic electrons penetrating a solid target. Phys. Plasmas 9, 941–948 (2002).

    Article  ADS  Google Scholar 

  7. Silva, L. O., Fonseca, R. A., Tonge, J. W., Mori, W. B. & Dawson, J. M. On the role of the purely transverse Weibel instability in fast ignitor scenarios. Phys. Plasmas 9, 2458–2461 (2002).

    Article  ADS  Google Scholar 

  8. Tatarakis, M. et al. Propagation instabilities of high intensity laser-produced electron beams. Phys. Rev. Lett. 90, 175001 (2003).

    Article  ADS  Google Scholar 

  9. Wei, M. S. et al. Observations of the filamentation of high intensity laser-produced electron beams. Phys. Rev. E 70, 056412 (2004).

    Article  ADS  Google Scholar 

  10. Bret, A., Firpo, M. C. & Deutsch, C. Characterisation of the initial filamentation of a relativistic electron beam passing through a plasma. Phys. Rev. Lett. 94, 115002 (2005).

    Article  ADS  Google Scholar 

  11. Jung, R. et al. Study of electron beam propagation through pre-ionized dense foam plasmas. Phys. Rev. Lett. 94, 195001 (2005).

    Article  ADS  Google Scholar 

  12. Lancaster, K. L. et al. Measurements of energy transport patterns in solid density laser plasma interactions at intensities of 5×1020 W cm−2. Phys. Rev. Lett. 98, 125002 (2007).

    Article  ADS  Google Scholar 

  13. Key, M. H. et al. Study of electron and proton isochoric heating for fast ignition. J. Physique IV 133, 371–378 (2006).

    ADS  Google Scholar 

  14. Gregory, C. Astrophysical Jet Experiments with Laser-Produced Plasmas. Thesis, Univ. of York (2007).

  15. Dribinski, V et al. Reconstruction of abel-transformable images: The Gaussian basis-set expansion abel transform method. Rev. Sci. Instrum. 73, 2634–2642 (2002).

    Article  ADS  Google Scholar 

  16. Christiansen, J. P., Ashby, D. E. T. F. & Roberts, K. V. MEDUSA—one-dimensional laser fusion code. Comp. Phys. Comm. 7, 271–287 (1974).

    Article  ADS  Google Scholar 

  17. MacFarlane, J. J., Golovkin, I. E. & Woodruff, P. R. HELIOS-CR—A 1-D radiation-magnetohydrodynamics code with inline atomic kinetics modeling. J. Quant. Spectrosc. Radiat. Transfer 99, 381–397 (2006).

    Article  ADS  Google Scholar 

  18. Yates, M. A. et al. Experimental-evidence for self-generated magnetic-fields and remote energy deposition in laser-irradiated targets. Phys. Rev. Lett. 49, 1702–1704 (1982).

    Article  ADS  Google Scholar 

  19. Amiranoff, F. et al. The evolution of two-dimensional effects in fast-electron transport from high-intensity laser plasma interactions. J. Phys. D 15, 2463–2468 (1982).

    Article  ADS  Google Scholar 

  20. Forslund, D. W. & Brackbill, J. U. Magnetic-field-induced surface transport on laser-irradiated foils. Phys. Rev. Lett. 48, 1614–1617 (1982).

    Article  ADS  Google Scholar 

  21. Fabbro, R. & Mora, P. Hot-electrons behavior in laser-plane target experiments. Phys. Lett. A 90, 48–50 (1982).

    Article  ADS  Google Scholar 

  22. Welch, D. R., Rose, D. V., Oliver, B. V. & Clark, R. E. Simulation techniques for heavy ion fusion chamber transport. Nucl. Instrum. Methods Phys. Res. A 464, 134–139 (2001).

    Article  ADS  Google Scholar 

  23. Bell, A. R., Robinson, A. P. L., Sherlock, M., Kingham, R. J. & Rozmus, W. Fast electron transport in laser-produced plasmas and the KALOS code for solution of the Vlasov–Fokker–Planck equation. Plasma Phys. Control. Fusion 48, R37–R57 (2006).

    Article  ADS  Google Scholar 

  24. Jackson, J. D. Classical Electrodynamics Ch. 5, 219–221 (Wiley, Hoboken, 1999).

    MATH  Google Scholar 

  25. Baton, S. et al. Recent experiments on electron transport in high intensity laser matter interaction. Plasma Phys. Control. Fusion 47, B777–B789 (2005).

    Article  ADS  Google Scholar 

  26. Danson, C. N. et al. Vulcan Petawatt—an ultrahigh interaction facility. Nucl. Fusion 44, S239–S246 (2004).

    Article  Google Scholar 

  27. Benattar, R., Popovics, C. & Sigel, R. Polarized-light interferometer for laser fusion studies. Rev. Sci. Instrum. 50, 1583–1585 (1979).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the UK Engineering and Physical Sciences Research Council and the Science and Technology Facilities Council. American colleagues acknowledge support from the US Department of energy contract number W-7405-Eng-48. Japanese colleagues acknowledge the Japan Society for the Promotion of Science. The authors gratefully acknowledge the support of the staff of the Central Laser Facility.

Author information

Authors and Affiliations

Authors

Contributions

F.N.B., R.R.F., J.S.G., M.H.K., R.K., K.L.L., P.A.N., R.S. and L.V.W. were all involved in project planning. J.S.G. and P.A.N. carried out the data analysis and wrote the letter. All other named authors contributed to the experimental work and corrected the manuscript.

Corresponding author

Correspondence to P. A. Norreys.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Green, J., Lancaster, K., Akli, K. et al. Surface heating of wire plasmas using laser-irradiated cone geometries. Nature Phys 3, 853–856 (2007). https://doi.org/10.1038/nphys755

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nphys755

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing