Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Imaging spontaneous currents in superconducting arrays of π-junctions

Abstract

A charge current can flow between two superconductors separated by a thin barrier. This phenomenon is the Josephson effect, which enables a current to tunnel at zero voltage1, typically with no phase shift between the superconductors in the lowest-energy state. Recently, Josephson junctions with ground-state phase shifts of π, proposed by theory three decades ago2, have been demonstrated3,4,5. In superconducting loops, π-junctions cause spontaneous circulation of persistent currents in zero magnetic field2, in analogy to spin-1/2 systems6. Here we use a scanning superconducting quantum interference device microscope7 to image the spontaneous zero-field currents in superconducting networks of temperature-controlled π-junctions with weakly ferromagnetic barriers3. We find an onset of spontaneous supercurrents at the 0–π transition temperature of the junctions, Tπ≈3 K. We image the currents in non-uniformly frustrated arrays consisting of cells with even and odd numbers of π-junctions. Such arrays are attractive model systems for studying the exotic phases of the two-dimensional XY-model8,9 and achieving scalable adiabatic quantum computers10.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: π-junction arrays.
Figure 2: Designed frustration.
Figure 3: Spontaneous current configurations.
Figure 4: Temperature-driven onset of spontaneous currents.

Similar content being viewed by others

References

  1. Josephson, B. D. Possible new effects in superconductive tunneling. Phys. Lett. 1, 251–253 (1962).

    Article  ADS  Google Scholar 

  2. Bulaevskii, L. N., Kuzii, V. V. & Sobyanin, A. A. Superconducting system with weak coupling to a current in the ground state. JETP Lett. 25, 290–294 (1977).

    ADS  Google Scholar 

  3. Ryazanov, V. V. et al. Coupling of two superconductors through a ferromagnet: evidence for a π-junction. Phys. Rev. Lett. 86, 2427–2430 (2001).

    Article  ADS  Google Scholar 

  4. Baselmans, J. J. A., Morpurgo, A. F., van Wees, B. & Klapwijk, T. M. Reversing the direction of supercurrent in a controllable Josephson junction. Nature 397, 43–45 (1999).

    Article  ADS  Google Scholar 

  5. vam Dam, J. A., Nazarov, Y. V., Bakkers, E. P. A. M., De Franceschi, S. & Kouwenhoven, L. P. Supercurrent reversal in quantum dots. Nature 442, 667–670 (2006).

    Article  ADS  Google Scholar 

  6. Della Rocca, M. L., Aprili, M., Kontos, T., Gomez, A. & Spathis, P. Ferromagnetic 0–π junctions as classical spins. Phys. Rev. Lett. 94, 197003 (2005).

    Article  ADS  Google Scholar 

  7. Vu, L. N. & Van Harlingen, D. J. Design and implementation of a scanning SQUID microscope. IEEE Trans. Appl. Supercond. 3, 1918–1921 (1993).

    Article  ADS  Google Scholar 

  8. Korshunov, S. E. Phase transitions in two-dimensional systems with continuous degeneracy. Phys.-Uspekhi 49, 225–262 (2006).

    Article  ADS  Google Scholar 

  9. Leo, C. D. & Rotoli, G. Paramagnetic and diamagnetic states in two-dimensional Josephson-junction arrays. Phys. Rev. Lett. 89, 167001 (2002).

    Article  ADS  Google Scholar 

  10. Ioffe, L. B., Geshkenbein, V. B., Feigelman, M. V., Fauchere, A. L. & Blatter, G. Environmentally decoupled sds-wave Josephson junctions for quantum computing. Nature 398, 679–681 (1999).

    Article  ADS  Google Scholar 

  11. Fulde, P. & Ferrell, R. A. Superconductivity in a strong spin-exchange field. Phys. Rev. 135, A550–A563 (1964).

    Article  ADS  Google Scholar 

  12. Larkin, A. I. & Ovchinnikov, Y. N. Inhomogeneous state of superconductors. Sov. Phys. JETP 20, 762–769 (1965).

    MathSciNet  Google Scholar 

  13. de Jong, M. J. & Beenaker, C. W. J. Andreev reflection in ferromagnet–superconductor junctions. Phys. Rev. Lett. 74, 1657 (1995).

    Article  ADS  Google Scholar 

  14. Buzdin, A. I. Proximity effects in superconductor–ferromagnet heterostructures. Rev. Mod. Phys. 77, 935–976 (2005).

    Article  ADS  Google Scholar 

  15. Oboznov, V. A., Bolginov, V. V., Feofanov, A. K., Ryazanov, V. V. & Buzdin, A. I. Thickness dependence of the Josephson ground states of superconductor–ferromagnet–superconductor junctions. Phys. Rev. Lett. 96, 197003 (2006).

    Article  ADS  Google Scholar 

  16. Yamashita, T., Tanikawa, K., Takahashi, S. & Maekawa, S. Superconducting π qubit with a ferromagnetic Josephson junction. Phys. Rev. Lett. 95, 097001 (2005).

    Article  ADS  Google Scholar 

  17. Ustinov, A. V. & Kaplunenko, V. K. Rapid single-flux quantum logic using π-shifters. J. Appl. Phys. 94, 5405–5407 (2003).

    Article  ADS  Google Scholar 

  18. Fominov, Y. V., Golubov, A. A. & Kupriyanov, M. Y. Decoherence due to nodal quasiparticles in d-wave qubits. JETP Lett. 77, 587–591 (2003).

    Article  ADS  Google Scholar 

  19. Weides, M. et al. High quality ferromagnetic 0 and π Josephson tunnel junctions. Appl. Phys. Lett. 89, 122511 (2006).

    Article  ADS  Google Scholar 

  20. Hilgenkamp, H. et al. Ordering and manipulation of the magnetic moments in large-scale superconducting π-loop arrays. Nature 442, 50–53 (2003).

    Article  ADS  Google Scholar 

  21. Van Harlingen, D. J. Phase-sensitive tests of the symmetry of the pairing state in the high-temperature superconductors—Evidence for d x 2 − y 2 symmetry. Rev. Mod. Phys. 67, 515–535 (1995).

    Article  ADS  Google Scholar 

  22. Frolov, S. M., Van Harlingen, D. J., Oboznov, V. A., Bolginov, V. V. & Ryazanov, V. V. Measurement of the current–phase relation of superconductor/ferromagnet/superconductor π Josephson junctions. Phys. Rev. B 70, 144505 (2004).

    Article  ADS  Google Scholar 

  23. Ryazanov, V. V., Oboznov, V. A., Veretennikov, A. V. & Rusanov, A. Y. Intrinsically frustrated superconducting array of superconductor–ferromagnet–superconductor π junctions. Phys. Rev. B 65, 020501 (2001).

    Article  Google Scholar 

  24. Frolov, S. M., Van Harlingen, D. J., Bolginov, V. V., Oboznov, V. A. & Ryazanov, V. V. Josephson interferometry and Shapiro step measurements of superconductor–ferromagnet–superconductor 0–π junctions. Phys. Rev. B 74, 020503 (2006).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

Research on π-Josephson junctions was supported by the National Science Foundation grant EIA-01-21568, by the US Civilian Research and Development Foundation (CRDF) grant RUP1-2691-CG-05 and by the Russian Foundation for Basic Research. The SSM imaging was supported by the Department of Energy Office of Basic Energy Sciences (DOE-BES) grant DEFG02-91-ER45439 through the Frederick Seitz Materials Research Laboratory at the University of Illinois at Urbana-Champaign.

Measurements, simulations and analysis were carried out by the Urbana group; arrays were fabricated by the Chernogolovka group; d.c. SQUID detectors were fabricated by the Naples group.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dale J. Van Harlingen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Frolov, S., Stoutimore, M., Crane, T. et al. Imaging spontaneous currents in superconducting arrays of π-junctions. Nature Phys 4, 32–36 (2008). https://doi.org/10.1038/nphys780

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nphys780

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing