Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A compact synchrotron radiation source driven by a laser-plasma wakefield accelerator

Abstract

Ultrashort light pulses are powerful tools for time-resolved studies of molecular and atomic dynamics1. They arise in the visible and infrared range from femtosecond lasers2, and at shorter wavelengths, in the ultraviolet and X-ray range, from synchrotron sources3 and free-electron lasers4. Recent progress in laser wakefield accelerators has resulted in electron beams with energies from tens of mega-electron volts (refs 5,6,7) to more than 1 GeV within a few centimetres8, with pulse durations predicted to be several femtoseconds9. The enormous progress in improving beam quality and stability5,6,7,8,10 makes them serious candidates for driving the next generation of ultracompact light sources11. Here, we demonstrate the first successful combination of a laser-plasma wakefield accelerator, producing 55–75 MeV electron bunches, with an undulator to generate visible synchrotron radiation. By demonstrating the wavelength scaling with energy, and narrow-bandwidth spectra, we show the potential for ultracompact and versatile laser-based radiation sources from the infrared to X-ray energies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Set-up of the experiment.
Figure 2: Undulator radiation spectrum and corresponding electron spectrum.
Figure 3: Correlation between electron energy and undulator radiation.

Similar content being viewed by others

References

  1. Zewail, A. Nobel 47 Lecture (1999) 274–367 (Nobel Lectures in Chemistry 1996–2000, World Scientific, Singapore, 2003).

    Google Scholar 

  2. Squier, J., Salin, F., Mourou, G. & Harter, D. 100-fs pulse generation and amplification in Ti:Al2O3 . Opt. Lett. 16, 324–326 (1991).

    Article  ADS  Google Scholar 

  3. Bilderback, D. H., Elleaume, P. & Weckert, E. Review of third and next generation synchrotron light sources. J. Phys. B 38, S773–S797 (2005).

    Article  ADS  Google Scholar 

  4. Ayvazyan, V. et al. First operation of a free-electron laser generating GW power radiation at 32 nm wavelength. Eur. Phys. J. D 37, 297–303 (2006).

    Article  ADS  Google Scholar 

  5. Mangles, S. P. D. et al. Monoenergetic beams of relativistic electrons from intense laser plasma interactions. Nature 431, 535–538 (2004).

    Article  ADS  Google Scholar 

  6. Geddes, C. G. R. et al. High quality electron beams from a laser wakefield accelerator using plasma-channel guiding. Nature 431, 538–541 (2004).

    Article  ADS  Google Scholar 

  7. Faure, J. et al. A laser-plasma accelerator producing monoenergetic electron beams. Nature 431, 541–544 (2004).

    Article  ADS  Google Scholar 

  8. Leemans, W. P. et al. GeV electron beams from a centimetre-scale accelerator. Nature Phys. 2, 696–699 (2006).

    Article  ADS  Google Scholar 

  9. Pukhov, A. & Meyer-ter Vehn, J. Laser wake field acceleration: The highly non-linear broken-wave regime. Appl. Phys. B 74, 355–361 (2002).

    Article  ADS  Google Scholar 

  10. Faure, J. et al. Controlled injection and acceleration of electrons in plasma wakefields by colliding laser pulses. Nature 444, 737 (2006).

    Article  ADS  Google Scholar 

  11. Jaroszynski, D. A. et al. Radiation sources based on laser-plasma interactions. Phil. Trans. R. Soc. A 364, 689 (2006).

    Article  ADS  Google Scholar 

  12. Chapman, H. et al. Femtosecond diffractive imaging with a soft-X-ray free-electron laser. Nature Phys. 2, 839–843 (2006).

    Article  ADS  Google Scholar 

  13. Tajima, T. & Dawson, J. M. Laser electron accelerator. Phys. Rev. Lett. 43, 267 (1979).

    Article  ADS  Google Scholar 

  14. Pittman, M. et al. Design and characterization of a near-diffraction-limited femtosecond 100-TW 10-Hz high-intensity laser system. Appl. Phys. B 74, 529–535 (2002).

    Article  ADS  Google Scholar 

  15. Schwoerer, H. et al. Thomson-backscattered x rays from laser-accelerated electrons. Phys. Rev. Lett. 96, 014802 (2006).

    Article  ADS  Google Scholar 

  16. Hidding, B. et al. Generation of quasimonoenergetic electron bunches with 80-fs laser pulses. Phys. Rev. Lett. 96, 105004 (2006).

    Article  ADS  Google Scholar 

  17. Jackson, J. D. Classical Electrodynamics (Wiley, New York, 1975).

    MATH  Google Scholar 

  18. Tanaka, T. & Kitamura, H. SPECTRA: A synchrotron radiation calculation code. J. Synchrotron Radiat. 8, 1221 (2001).

    Article  Google Scholar 

  19. van Tilborg, J. et al. Temporal characterization of femtosecond laser-plasma-accelerated electron bunches using terahertz radiation. Phys. Rev. Lett. 96, 014801 (2006).

    Article  ADS  Google Scholar 

  20. Glinec, Y. et al. Observation of fine structures in laser-driven electron beams using coherent transition radiation. Phys. Rev. Lett. 98, 194801 (2007).

    Article  ADS  Google Scholar 

  21. Jaroszynski, D. A. et al. Superradiance in a short-pulse free-electron-laser oscillator. Phys. Rev. Lett. 78, 1699–1702 (1997).

    Article  ADS  Google Scholar 

  22. Rousse, A. et al. Production of a keV X-ray beam from synchrotron radiation in relativistic laser-plasma interaction. Phys. Rev. Lett. 93, 135005 (2004).

    Article  ADS  Google Scholar 

  23. Phuoc, K. T. et al. Imaging electron trajectories in a laser-wakefield cavity using betatron X-ray radiation. Phys. Rev. Lett. 97, 225002 (2006).

    Article  ADS  Google Scholar 

  24. Schwoerer, H. et al. Laser–plasma acceleration of quasi-monoenergetic protons from microstructured targets. Nature 439, 445–448 (2006).

    Article  ADS  Google Scholar 

  25. Hegelich, M. et al. Laser acceleration of quasi-monoenergetic MeV ion beams. Nature 439, 441–444 (2006).

    Article  ADS  Google Scholar 

  26. Glinec, Y. et al. Absolute calibration for a broad range single shot electron spectrometer. Rev. Sci. Instrum. 77, 103301 (2006).

    Article  ADS  Google Scholar 

  27. Tanaka, K. A. et al. Calibration of imaging plate for high energy electron spectrometer. Rev. Sci. Instrum. 76, 013507 (2005).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Deutsche Forschungsgemeinschaft under contract TR18. Financial support by the Access to Research Infrastructures activity in the Sixth Framework Programme of the EU (contract RII3-CT-2003-506350, Laserlab Europe) for conducting the research is gratefully acknowledged. We thank B. Beleites, F. Ronneberger and W. Ziegler for their technical support. S.M.W. acknowledges the support of the Department of Physics, Lancaster University, and the Cockcroft Institute, Daresbury Laboratory, Daresbury, UK. The UK team also acknowledges the support of the 105 Research Councils UK, EPSRC and the EU EuroLEAP NEST contract no. 028514.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. A. Jaroszynski.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schlenvoigt, HP., Haupt, K., Debus, A. et al. A compact synchrotron radiation source driven by a laser-plasma wakefield accelerator. Nature Phys 4, 130–133 (2008). https://doi.org/10.1038/nphys811

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nphys811

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing