Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Memory-built-in quantum teleportation with photonic and atomic qubits

Abstract

The combination of quantum teleportation1 and quantum memory2,3,4,5 of photonic qubits is essential for future implementations of large-scale quantum communication6 and measurement-based quantum computation7,8. Both steps have been achieved separately in many proof-of-principle experiments9,10,11,12,13,14, but the demonstration of memory-built-in teleportation of photonic qubits remains an experimental challenge. Here, we demonstrate teleportation between photonic (flying) and atomic (stationary) qubits. In our experiment, an unknown polarization state of a single photon is teleported over 7 m onto a remote atomic qubit that also serves as a quantum memory. The teleported state can be stored and successfully read out for up to 8 μs. Besides being of fundamental interest, teleportation between photonic and atomic qubits with the direct inclusion of a readable quantum memory represents a step towards an efficient and scalable quantum network2,3,4,5,6,7,8.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Experimental set-up for teleportation between photonic and atomic qubits.
Figure 2: Schematic diagram of the phase-locking set-up.
Figure 3: Fidelity of |R〉 teleportation as a function of storage time.

Similar content being viewed by others

References

  1. Bennett, C. H. et al. Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70, 1895–1899 (1993).

    Article  ADS  MathSciNet  Google Scholar 

  2. Duan, L.-M., Lukin, M. D., Cirac, J. I. & Zoller, P. Long-distance quantum communication with atomic ensembles and linear optics. Nature 414, 413–418 (2001).

    Article  ADS  Google Scholar 

  3. Zhao, B., Chen, Z.-B., Chen, Y.-A., Schmiedmayer, J. & Pan, J.-W. Robust creation of entanglement between remote memory qubits. Phys. Rev. Lett. 98, 240502 (2007).

    Article  ADS  Google Scholar 

  4. Jiang, L., Taylor, J. M. & Lukin, M. D. Fast and robust approach to long-distance quantum communication with atomic ensembles. Phys. Rev. A 76, 012301 (2007).

    Article  ADS  Google Scholar 

  5. Chen, Z.-B., Zhao, B., Chen, Y.-A., Schmiedmayer, J. & Pan, J.-W. Fault-tolerant quantum repeater with atomic ensembles and linear optics. Phys. Rev. A 76, 022329 (2007).

    Article  ADS  Google Scholar 

  6. Briegel, H.-J., Dür, W., Cirac, J. I. & Zoller, P. Quantum repeaters: The role of imperfect local operations in quantum communication. Phys. Rev. Lett. 81, 5932–5935 (1998).

    Article  ADS  Google Scholar 

  7. Gottesman, D. & Chuang, I. L. Demonstrating the viability of universal quantum computation using teleportation and single-qubit operations. Nature 402, 390–393 (1999).

    Article  ADS  Google Scholar 

  8. Knill, E., Laflamme, R. & Milburn, G. J. A scheme for efficient quantum computation with linear optics. Nature 409, 46–52 (2001).

    Article  ADS  Google Scholar 

  9. Bouwmeester, D. et al. Experimental quantum teleportation. Nature 390, 575–579 (1997).

    Article  ADS  Google Scholar 

  10. Pan, J.-W., Bouwmeester, D., Weinfurter, H. & Zeilinger, A. Experimental entanglement swapping: Entangling photons that never interacted. Phys. Rev. Lett. 80, 3891–3894 (1998).

    Article  ADS  MathSciNet  Google Scholar 

  11. Zhao, Z. et al. Experimental demonstration of five-photon entanglement and open-destination teleportation. Nature 430, 54–58 (2004).

    Article  ADS  Google Scholar 

  12. Matsukevich, D. N. & Kuzmich, A. Quantum state transfer between matter and light. Science 306, 663–666 (2004).

    Article  ADS  Google Scholar 

  13. Eisaman, M. D. et al. Electromagnetically induced transparency with tunable single-photon pulses. Nature 438, 837–841 (2005).

    Article  ADS  Google Scholar 

  14. Chanelière, T. et al. Storage and retrieval of single photons transmitted between remote quantum memories. Nature 438, 833–836 (2005).

    Article  ADS  Google Scholar 

  15. Riebe, M. et al. Deterministic quantum teleportation with atoms. Nature 429, 734–737 (2004).

    Article  ADS  Google Scholar 

  16. Barrett, M. D. et al. Deterministic quantum teleportation of atomic qubits. Nature 429, 737–739 (2004).

    Article  ADS  Google Scholar 

  17. Furusawa, A. et al. Unconditional quantum teleportation. Science 282, 706–709 (1998).

    Article  ADS  Google Scholar 

  18. Sherson, J. F. et al. Quantum teleportation between light and matter. Nature 443, 557–560 (2006).

    Article  ADS  Google Scholar 

  19. Hammerer, K., Polzik, E. S. & Cirac, J. I. Teleportation and spin squeezing utilizing multimode entanglement of light with atoms. Phys. Rev. A 72, 052313 (2005).

    Article  ADS  Google Scholar 

  20. Kozhekin, A. E., Mølmer, K. & Polzik, E. S. Quantum memory for light. Phys. Rev. A 62, 033809 (2000).

    Article  ADS  Google Scholar 

  21. Schmitt-Manderbach, T. et al. Experimental demonstration of free-space decoy-state quantum key distribution over 144 km. Phys. Rev. Lett. 98, 010504 (2007).

    Article  ADS  Google Scholar 

  22. Peng, C.-Z. et al. Experimental long-distance decoy-state quantum key distribution based on polarization encoding. Phys. Rev. Lett. 98, 010505 (2007).

    Article  ADS  Google Scholar 

  23. Yuan, Z.-S. et al. Synchronized independent narrow-band single photons and efficient generation of photonic entanglement. Phys. Rev. Lett. 98, 180503 (2007).

    Article  ADS  Google Scholar 

  24. Mattle, K., Weinfurter, H., Kwiat, P. G. & Zeilinger, A. Dense coding in experimental quantum communication. Phys. Rev. Lett. 76, 4656–4659 (1996).

    Article  ADS  Google Scholar 

  25. Chen, S. et al. Deterministic and storable single-photon source based on a quantum memory. Phys. Rev. Lett. 97, 173004 (2006).

    Article  ADS  Google Scholar 

  26. Matsukevich, D. N. et al. Deterministic single photons via conditional quantum evolution. Phys. Rev. Lett. 97, 013601 (2006).

    Article  ADS  Google Scholar 

  27. Harber, D. M., Lewandowski, H. J., McGuirk, J. M. & Cornell, E. A. Effect of cold collisions on spin coherence and resonance shifts in a magnetically trapped ultracold gas. Phys. Rev. A 66, 053616 (2002).

    Article  ADS  Google Scholar 

  28. Aspelmeyer, M. et al. Long-distance free-space distribution of quantum entanglement. Science 301, 621–623 (2003).

    Article  ADS  Google Scholar 

  29. Peng, C.-Z. et al. Experimental free-space distribution of entangled photon pairs over a noisy ground atmosphere of 13 km. Phys. Rev. Lett. 94, 150501 (2005).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Deutsche Forschungsgemeinschaft (DFG), the Alexander von Humboldt Foundation, the Chinese Academy of Sciences (CAS), the National Fundamental Research Program (Grant No. 2006CB921900) and NNSFC.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yu-Ao Chen or Jian-Wei Pan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, YA., Chen, S., Yuan, ZS. et al. Memory-built-in quantum teleportation with photonic and atomic qubits. Nature Phys 4, 103–107 (2008). https://doi.org/10.1038/nphys832

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nphys832

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing