Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Fractional charge and quantized current in the quantum spin Hall state

Abstract

Soon after the theoretical proposal of the intrinsic spin Hall effect1,2 in doped semiconductors, the concept of a time-reversal invariant spin Hall insulator3 was introduced. In the extreme quantum limit, a quantum spin Hall (QSH) insulator state has been proposed for various systems4,5,6. Recently, the QSH effect has been theoretically proposed6 and experimentally observed7 in HgTe quantum wells. One central question, however, remains unanswered—what is the direct experimental manifestation of this topologically non-trivial state of matter? In the case of the quantum Hall effect, it is the quantization of the Hall conductance and the fractional charge of quasiparticles, which are results of non-trivial topological structure. Here, we predict that for the QSH state a magnetic domain wall induces a localized state with half the charge of an electron. We also show that a rotating magnetic field can induce a quantized d.c. electric current, and vice versa. Both of these physical phenomena are expected to be direct and experimentally observable consequences of the non-trivial topology of the QSH state.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Illustrations of proposed phenomena.
Figure 2: Experimental geometry of the SET device and proposed signature of static fractional charge.
Figure 3: Experimental geometry for current generated from adiabatic pumping.

Similar content being viewed by others

References

  1. Murakami, S., Nagaosa, N. & Zhang, S. C. Dissipationless quantum spin current at room temperature. Science 301, 1348–1351 (2003).

    Article  ADS  Google Scholar 

  2. Sinova, J. et al. Universal intrinsic spin Hall effect. Phys. Rev. Lett. 92, 126603 (2004).

    Article  ADS  Google Scholar 

  3. Murakami, S., Nagaosa, N. & Zhang, S. C. Spin-Hall insulator. Phys. Rev. Lett. 93, 156804 (2004).

    Article  ADS  Google Scholar 

  4. Kane, C. L. & Mele, E. J. Quantum spin Hall effect in graphene. Phys. Rev. Lett. 95, 226801 (2005).

    Article  ADS  Google Scholar 

  5. Bernevig, B. A. & Zhang, S. C. Quantum spin Hall effect. Phys. Rev. Lett. 96, 106802 (2006).

    Article  ADS  Google Scholar 

  6. Bernevig, B. A., Hughes, T. L. & Zhang, S. C. Quantum spin Hall effect and topological phase transition in HgTe quantum wells. Science 314, 1757–1761 (2006).

    Article  ADS  Google Scholar 

  7. König, M. et al. Quantum spin Hall insulator state in HgTe quantum wells. Science 318, 766–770 (2007).

    Article  ADS  Google Scholar 

  8. Wu, C., Bernevig, B. A. & Zhang, S. C. Helical liquid and the edge of quantum spin Hall systems. Phys. Rev. Lett. 96, 106401 (2006).

    Article  ADS  Google Scholar 

  9. Xu, C. & Moore, J. E. Stability of the quantum spin Hall effect: Effects of interactions, disorder, and Z2 topology. Phys. Rev. B 73, 045322 (2006).

    Article  ADS  Google Scholar 

  10. Su, W. P., Schrieffer, J. R. & Heeger, A. J. Solitons in polyacetylene. Phys. Rev. Lett. 42, 1698–1701 (1979).

    Article  ADS  Google Scholar 

  11. Lee, D. H., Zhang, G. M. & Xiang, T. Edge solitons of topological insulators and fractionalized quasiparticles in two dimensions. Phys. Rev. Lett. 99, 196805 (2007).

    Article  ADS  Google Scholar 

  12. Jackiw, R. & Rebbi, C. Solitons with fermion number 1/2. Phys. Rev. D 13, 3398–3409 (1976).

    Article  ADS  MathSciNet  Google Scholar 

  13. Thouless, D. J. Quantization of particle transport. Phys. Rev. B 27, 6083–6087 (1983).

    Article  ADS  MathSciNet  Google Scholar 

  14. Goldstone, J. & Wilczek, F. Fractional quantum numbers on solitons. Phys. Rev. Lett. 47, 986–989 (1981).

    Article  ADS  MathSciNet  Google Scholar 

  15. Novik, E. G. et al. Band structure of semimagnetic Hg1−yMnyTe quantum wells. Phys. Rev. B 72, 035321 (2005).

    Article  ADS  Google Scholar 

  16. Kastner, M. A., Kwasnick, R. F., Licini, J. C. & Bishop, D. J. Conductance fluctuations near the localized-to-extended transition in narrow Si metal-oxide-semiconductor field-effect transistors. Phys. Rev. B 36, 8015–8031 (1987).

    Article  ADS  Google Scholar 

  17. Kastner, M. A. The single-electron transistor. Rev. Mod. Phys. 64, 849–858 (1992).

    Article  ADS  Google Scholar 

  18. Yoo, M. J. et al. Scanning single-electron transistor microscopy: Imaging individual charges. Science 276, 579–582 (1997).

    Article  Google Scholar 

  19. Martin, J. et al. Localization of fractionally charged quasi-particles. Science 305, 980–983 (2004).

    Article  ADS  Google Scholar 

  20. Prinz, G. A. Hybrid ferromagnetic-semiconductor structure. Science 250, 1092–1097 (1990).

    Article  ADS  Google Scholar 

  21. Halm, S. et al. Local spin manipulation in ferromagnet-semiconductor hybrids. Appl. Phys. Lett. 90, 051916 (2007).

    Article  ADS  Google Scholar 

  22. Kleiber, M. et al. Magnetization switching of submicrometer CO dots induced by a magnetic force microscope tip. Phys. Rev. B 58, 5563–5567 (1998).

    Article  ADS  Google Scholar 

  23. Witten, E. Dyons of charge e θ/2π. Phys. Lett. B 86, 283–287 (1979).

    Article  ADS  Google Scholar 

  24. Kane, E. O. Band structure of InSb. J. Phys. Chem. Solids 1, 249–261 (1957).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We wish to thank B. A. Bernevig, H. Buhmann, X. Dai, C. L. Kane, M. Koenig and L. Molenkamp for insightful discussions. We acknowledge C.-X. Liu for sharing his unpublished numerical results. This work is supported by the NSF through the grants DMR-0342832, by the US Department of Energy, Office of Basic Energy Sciences under contract DE-AC03-76SF00515, and the Focus Center Research Program (FCRP) Center on Functional Engineered Nanoarchitectonics (FENA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shou-Cheng Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Qi, XL., Hughes, T. & Zhang, SC. Fractional charge and quantized current in the quantum spin Hall state. Nature Phys 4, 273–276 (2008). https://doi.org/10.1038/nphys913

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nphys913

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing