Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

An off-board quantum point contact as a sensitive detector of cantilever motion

Abstract

Recent advances in the fabrication of microelectromechanical systems and their evolution into nanoelectromechanical systems have enabled researchers to measure extremely small forces, masses and displacements1. In particular, researchers have developed position transducers with resolution approaching the uncertainty limit set by quantum mechanics2,3,4,5. The achievement of such resolution has implications not only for the detection of quantum behaviour in mechanical systems, but also for a variety of other precision experiments including the bounding of deviations from newtonian gravity at short distances6 and the measurement of single spins7. Here, we demonstrate the use of a quantum point contact as a sensitive displacement detector capable of sensing the low-temperature thermal motion of a nearby micromechanical cantilever. Advantages of this approach include versatility due to its off-board design, compatibility with nanoscale oscillators and, with further development, the potential to achieve quantum-limited displacement detection8,9.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Components and geometry of the experiment.
Figure 2: Pinching off the QPC using both gate voltage and lever voltage.
Figure 3: G/ x plotted as a function of cantilever x and y over the QPC device.
Figure 4: Cantilever thermal noise spectrum observed using a QPC transducer.
Figure 5: The response of the QPC to the thermal motion of the cantilever tip.

Similar content being viewed by others

References

  1. Schwab, K. C. & Roukes, M. L. Putting mechanics into quantum mechanics. Phys. Today 58, 36–42 (2005).

    Article  Google Scholar 

  2. Knobel, R. G. & Cleland, A. N. Nanometre-scale displacement sensing using a single electron transistor. Nature 424, 291–293 (2003).

    Article  ADS  Google Scholar 

  3. Naik, A. et al. Cooling a nanomechanical resonator with quantum back-action. Nature 443, 193–196 (2006).

    Article  ADS  Google Scholar 

  4. LaHaye, M. D. et al. Approaching the quantum limit of a nanomechanical resonator. Science 304, 74–77 (2004).

    Article  ADS  Google Scholar 

  5. Flowers-Jacobs, N. E., Schmidt, D. R. & Lehnert, K. W. Intrinsic noise properties of atomic point contact displacement detectors. Phys. Rev. Lett. 98, 096804 (2007).

    Article  ADS  Google Scholar 

  6. Smullin, S. J. et al. Constraints on Yukawa-type deviations from Newtonian gravity at 20 microns. Phys. Rev. D 72, 122001 (2005).

    Article  ADS  Google Scholar 

  7. Rugar, D., Budakian, R., Mamin, H. J. & Chui, B. W. Single spin detection by magnetic resonance force microscopy. Nature 430, 329–332 (2004).

    Article  ADS  Google Scholar 

  8. Clerk, A. A., Girvin, S. M. & Stone, A. D. Quantum-limited measurement and information in mesoscopic detectors. Phys. Rev. B 67, 165324 (2003).

    Article  ADS  Google Scholar 

  9. Clerk, A. A. Quantum-limited position detection and amplification: A linear response perspective. Phys. Rev. B 70, 245306 (2004).

    Article  ADS  Google Scholar 

  10. Caniard, T. et al. Ultrasensitive optical measurement of thermal and quantum noises. Opt. Spectrosc. 103, 225–230 (2007).

    Article  ADS  Google Scholar 

  11. Arcizet, O. et al. High-sensitivity optical monitoring of a micromechanical resonator with a quantum-limited optomechanical sensor. Phys. Rev. Lett. 97, 133601 (2006).

    Article  ADS  Google Scholar 

  12. Bleszynski-Jayich, A. C., Shanks, W. E. & Harris, J. G. E. Noise thermometry and electron thermometry of a sample-on-cantilever system below 1 Kelvin. Appl. Phys. Lett. 92, 013123 (2008).

    Article  ADS  Google Scholar 

  13. Mamin, H. J. & Rugar, D. Sub-attonewton force detection at millikelvin temperatures. Appl. Phys. Lett. 79, 3358–3360 (2001).

    Article  ADS  Google Scholar 

  14. Nonnenmacher, M., Vaez-Iravani, M. & Wickramasinghe, H. K. Attractive mode force microscopy using a feedback-controlled fiber interferometer. Rev. Sci. Instrum. 63, 5373–5376 (1992).

    Article  ADS  Google Scholar 

  15. Sidles, J. A. et al. Magnetic resonance force microscopy. Rev. Mod. Phys. 67, 249–265 (1995).

    Article  ADS  Google Scholar 

  16. van Wees, B. J. et al. Quantized conductance of point contacts in a two-dimensional electron gas. Phys. Rev. Lett. 60, 848–850 (1988).

    Article  ADS  Google Scholar 

  17. Wharam, D. A. et al. One-dimensional transport and the quantisation of the ballistic resistance. J. Phys. C 21, L209–L214 (1988).

    Google Scholar 

  18. Field, M. et al. Measurements of Coulomb blockade with a noninvasive voltage probe. Phys. Rev. Lett. 70, 1311–1314 (1993).

    Article  ADS  Google Scholar 

  19. Buks, E. et al. Dephasing in electron interference by a ‘which-path’ detector. Nature 391, 871–874 (1998).

    Article  ADS  Google Scholar 

  20. Sprinzak, D., Buks, E., Heiblum, M. & Shtrikman, H. Controlled dephasing of electrons via a phase sensitive detector. Phys. Rev. Lett. 84, 5820–5823 (2000).

    Article  ADS  Google Scholar 

  21. Cleland, A. N., Aldridge, J. S., Driscoll, D. C. & Gossard, A. C. Nanomechanical displacement sensing using a quantum point contact. Appl. Phys. Lett. 81, 1699–1701 (2002).

    Article  ADS  Google Scholar 

  22. Li, Y. P. et al. Low-frequency noise in transport through quantum point contacts. Appl. Phys. Lett. 57, 774–776 (1990).

    Article  ADS  Google Scholar 

  23. Stipe, B. C. et al. Noncontact friction and force fluctuations between closely spaced bodies. Phys. Rev. Lett. 87, 096801 (2001).

    Article  ADS  Google Scholar 

  24. Stowe, T. D. et al. Attonewton force detection using ultrathin silicon cantilevers. Appl. Phys. Lett. 71, 288–290 (1997).

    Article  ADS  Google Scholar 

  25. Wesström, J.-O. J. et al. Demonstration of quantized conductance in deeply reactive ion etched In0.53Ga0.47As/InP electron waveguides with in-plane gates. Appl. Phys. Lett. 70, 1302–1304 (1997).

    Article  ADS  Google Scholar 

  26. Bruland, K. J. et al. Thermal tuning of a fiber-optic interferometer for maximum sensitivity. Rev. Sci. Instrum. 70, 3542–3544 (1999).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank A. A. Clerk for useful discussions and L. S. Moore for measuring the properties of the 2DEG used here. This work was supported by the Stanford-IBM Center for Probing the Nanoscale, an NSF NSEC, grant PHY-0425897. M.P.J. acknowledges support from an NDSEG Fellowship.

Author information

Authors and Affiliations

Authors

Contributions

M.P. conceived and planned the experiment in collaboration with M.P.J., C.L.D., D.G.-G. and D.R. M.P.J. prepared and characterized the QPC samples, which were fabricated by M.A.T. and M.P.J. M.P. carried out the experiment with the assistance of C.L.D., M.P.J. and H.J.M. M.P. analysed the data and wrote the paper. All authors discussed the results and contributed to the manuscript.

Corresponding author

Correspondence to M. Poggio.

Supplementary information

Supplementary Information

Supplementary Figure 1 (PDF 236 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Poggio, M., Jura, M., Degen, C. et al. An off-board quantum point contact as a sensitive detector of cantilever motion. Nature Phys 4, 635–638 (2008). https://doi.org/10.1038/nphys992

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nphys992

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing