Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

In situ doping control of the surface of high-temperature superconductors

Abstract

Central to the understanding of high-temperature superconductivity is the evolution of the electronic structure as doping alters the density of charge carriers in the CuO2 planes. Superconductivity emerges along the path from a normal metal on the overdoped side to an antiferromagnetic insulator on the underdoped side. This path also exhibits a severe disruption of the overdoped normal metal’s Fermi surface1,2,3. Angle-resolved photoemission spectroscopy (ARPES) on the surfaces of easily cleaved materials such as Bi2Sr2CaCu2O8+δ shows that in zero magnetic field the Fermi surface breaks up into disconnected arcs4,5,6. However, in high magnetic field, quantum oscillations7 at low temperatures in YBa2Cu3O6.5 indicate the existence of small Fermi surface pockets8,9,10,11,12,13,14,15,16,17,18. Reconciling these two phenomena through ARPES studies of YBa2Cu3O7−δ (YBCO) has been hampered by the surface sensitivity of the technique19,20,21. Here, we show that this difficulty stems from the polarity and resulting self-doping of the YBCO surface. Through in situ deposition of potassium atoms on cleaved YBCO, we can continuously control the surface doping and follow the evolution of the Fermi surface from the overdoped to the underdoped regime. The present approach opens the door to systematic studies of high-temperature superconductors, such as creating new electron-doped superconductors from insulating parent compounds.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The surface of cleaved YBCO.
Figure 2: YBCO Fermi surface evolution on electron doping.
Figure 3: YBCO dispersion and EDC evolution on electron doping.
Figure 4: Phase diagram of YBCO by ARPES.

Similar content being viewed by others

References

  1. Hussey, N. E., Abdel-Jawad, M., Carrington, A., Mackenzie, A. P. & Balicas, L. A coherent three-dimensional Fermi surface in a high-transition-temperature superconductor. Nature 425, 814–817 (2003).

    Article  ADS  Google Scholar 

  2. Platé, M. et al. Fermi surface and quasiparticle excitations of overdoped Tl2Ba2CuO6+δ by ARPES. Phys. Rev. Lett. 95, 077001 (2005).

    Article  ADS  Google Scholar 

  3. Peets, D. C. et al. Tl2Ba2CuO6+δ brings spectroscopic probes deep into the overdoped regime of the high-Tc cuprates. New J. Phys. 9, 1–32 (2007).

    Article  MathSciNet  Google Scholar 

  4. Norman, M. R. et al. Destruction of the Fermi surface in underdoped high-Tc superconductors. Nature 392, 157–160 (1998).

    Article  ADS  Google Scholar 

  5. Kanigel, A. et al. Evolution of the pseudogap from Fermi arcs to the nodal liquid. Nature Phys. 2, 447–451 (2006).

    Article  ADS  Google Scholar 

  6. Shen, K. M. et al. Nodal quasiparticles and antinodal charge ordering in Ca2−xNaxCuO2Cl2 . Science 307, 901–904 (2005).

    Article  ADS  Google Scholar 

  7. Doiron-Leyraud, N. et al. Quantum oscillations and the Fermi surface in an underdoped high-Tc superconductor. Nature 447, 565–568 (2007).

    Article  ADS  Google Scholar 

  8. Balakirev, F. F. et al. Fermi surface reconstruction at optimum doping in high-Tc superconductors. Preprint at <http://arxiv.org/abs/0710.4612> (2007).

  9. LeBoeuf, D. et al. Electron pockets in the Fermi surface of hole-doped high-Tc superconductors. Nature 450, 533–536 (2007).

    Article  ADS  Google Scholar 

  10. Jaudet, C. et al. de Haas-van Alphen oscillations in the underdoped cuprate YBa2Cu3O6.5 . Phys. Rev. Lett. 100, 187005 (2008).

    Article  ADS  Google Scholar 

  11. Elfimov, I. S., Sawatzky, G. A. & Damascelli, A. Fermi pockets and correlation effects in underdoped YBa2Cu3O6.5 . Phys. Rev. B 77, 060504(R) (2008).

    Article  ADS  Google Scholar 

  12. Carrington, A. & Yelland, E. A. Band-structure calculations of Fermi-surface pockets in ortho-II YBa2Cu3O6.5 . Phys. Rev. B 76, 140508(R) (2007).

    Article  ADS  Google Scholar 

  13. Harrison, N., McDonald, R. D. & Singleton, J. Cuprate Fermi orbits and Fermi arcs: The effect of short-range antiferromagnetic order. Phys. Rev. Lett. 99, 206406 (2007).

    Article  ADS  Google Scholar 

  14. Chen, W.-Q., Yang, K.-Y., Rice, T. M. & Zhang, F. C. Quantum oscillations in magnetic field induced antiferromagnetic phase of underdoped cuprates : Application to ortho-II YBa2Cu3O6.5 . Europhys. Lett. 82, 17004 (2008).

    Article  Google Scholar 

  15. Millis, A. J. & Norman, M. Antiphase stripe order as the origin of electron pockets observed in 1/8-hole-doped cuprates. Phys. Rev. B 76, 220503(R) (2007).

    Article  ADS  Google Scholar 

  16. Chakravarty, S. & Kee, H.-Y. Fermi pockets and quantum oscillations of the Hall coefficient in high temperature superconductors. Preprint at <http://arxiv.org/abs/0710.0608> (2007).

  17. Alexandrov, A. S. Theory of quantum magneto-oscillations in underdoped cuprate superconductors. J. Phys. Condens. Matter 20, 192202 (2008).

    Article  ADS  Google Scholar 

  18. Melikyan, A. & Vafek, O. Quantum oscillations in the mixed state of d-wave superconductor. Preprint at <http://arxiv.org/abs/0711.0776> (2007).

  19. Schabel, M. C. et al. Angle-resolved photoemission on untwinned YBa2Cu3O6.95. I. Electronic structure and dispersion relations of surface and bulk bands. Phys. Rev. B 57, 6090–6106 (1998).

    Article  ADS  Google Scholar 

  20. Lu, D. H. et al. Superconducting gap and strong in-plane anisotropy in untwinned YBa2Cu3O7−d . Phys. Rev. Lett. 86, 4370–4373 (2001).

    Article  ADS  Google Scholar 

  21. Zabolotnyy, V. B. et al. Momentum and temperature dependence of renormalization effects in the high-temperature superconductor YBa2Cu3O7−d . Phys. Rev. B 76, 064519 (2007).

    Article  ADS  Google Scholar 

  22. Derro, D. J. et al. Nanoscale one-dimensional scattering resonances in the CuO chains of YBa2Cu3O6+x . Phys. Rev. Lett. 88, 097002 (2002).

    Article  ADS  Google Scholar 

  23. Liang, R., Bonn, D. A. & Hardy, W. N. Evaluation of CuO2 plane hole doping in YBa2Cu3O6+x single crystals. Phys. Rev. B 73, 180505 (2006).

    Article  ADS  Google Scholar 

  24. Kondo, T. et al. Dual character of the electronic structure of YBa2Cu4O8: The conduction bands of CuO2 planes and CuO chains. Phys. Rev. Lett. 98, 157002 (2007).

    Article  ADS  Google Scholar 

  25. Hesper, R., Tjeng, L. H., Heeres, A. & Sawatzky, G. A. Photoemission evidence of electronic stabilization of polar surfaces in K3C60 . Phys. Rev. B 62, 16046–16055 (2000).

    Article  ADS  Google Scholar 

  26. Sushkov, O. P., Sawatzky, G. A., Eder, R. & Eskes, H. Hole photoproduction in insulating copper oxide. Phys. Rev. B 56, 11769–11776 (1997).

    Article  ADS  Google Scholar 

  27. Eskes, H. & Eder, R. Hubbard model versus t–J model: The one-particle spectrum. Phys. Rev. B 54, 14226–14229 (1996).

    Article  ADS  Google Scholar 

  28. Liang, R., Bonn, D. A. & Hardy, W. N. Preparation and x-ray characterization of highly ordered ortho-II phase YBa2Cu3O6.50 single crystals. Physica C 336, 57–62 (2000).

    Article  ADS  Google Scholar 

  29. Damascelli, A. et al. Fermi surface, surface states, and surface reconstruction in Sr2RuO4 . Phys. Rev. Lett. 85, 5194–5197 (2000).

    Article  ADS  Google Scholar 

  30. Ohta, T., Bostwick, A., Seyller, T., Horn, K. & Rotenberg, E. Controlling the electronic structure of bilayer graphene. Science 313, 951–954 (2006).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge J. van den Brink for insightful discussions. This work was supported by the Alfred P. Sloan Foundation (A.D.), an ALS Doctoral Fellowship (M.A.H.), the CRC Program (A.D. and G.A.S), NSERC, CFI, CIFAR Quantum Materials and BCSI. The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the US Department of Energy under Contract No. DE-AC02-05CH11231.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Damascelli.

Supplementary information

Supplementary Information

Supplementary Information and Supplementary Figure 1 (PDF 220 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hossain, M., Mottershead, J., Fournier, D. et al. In situ doping control of the surface of high-temperature superconductors. Nature Phys 4, 527–531 (2008). https://doi.org/10.1038/nphys998

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nphys998

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing