Log in or create a free account to read this content
Gain free access to this article, as well as selected content from this journal and more on nature.com
or
References
Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N et al (2013). Multiplex genome engineering using CRISPR/Cas systems. Science 339: 819–823.
Heidenreich M, Zhang F (2016). Applications of CRISPR-Cas systems in neuroscience. Nat Rev Neurosci 17: 36–44.
Jinek M, East A, Cheng A, Lin S, Ma E, Doudna J (2013). RNA-programmed genome editing in human cells. Elife 2: e00471.
Platt RJ, Chen S, Zhou Y, Yim MJ, Swiech L, Kempton HR et al (2014). CRISPR-Cas9 knockin mice for genome editing and cancer modeling. Cell 159: 440–455.
Polderman TJ, Benyamin B, de Leeuw CA, Sullivan PF, van Bochoven A, Visscher PM et al (2015). Meta-analysis of the heritability of human traits based on fifty years of twin studies. Nat Genet 47: 702–709.
Slaymaker IM, Gao L, Zetsche B, Scott DA, Yan WX, Zhang F (2016). Rationally engineered Cas9 nucleases with improved specificity. Science 351: 84–88.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Caligiuri, S., Kenny, P. The Promise of Genome Editing for Modeling Psychiatric Disorders. Neuropsychopharmacol. 43, 223–224 (2018). https://doi.org/10.1038/npp.2017.197
Published:
Issue date:
DOI: https://doi.org/10.1038/npp.2017.197
This article is cited by
-
Ten challenges for clinical translation in psychiatric genetics
Nature Genetics (2022)
-
Durchbrüche im Verständnis der molekularen Ursachen psychiatrischer Störungen
Der Nervenarzt (2019)