Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Quantitative multiplex degenerate PCR for human endogenous retrovirus expression profiling

Abstract

Expression of human endogenous retroviruses (HERV) has been recurrently observed during cellular differentiation or transformation processes in both cell culture and in vivo. Quantitative approaches that analyze variations in HERV transcription could therefore be valuable for cancer diagnosis. We have developed a quantitative assay combining multiplex degenerate PCR (MD-PCR) and a colorimetric Oligo Sorbent Array (OLISA). Quantification of the expression of these multifamily genes relies on the optimization of the amplification primer mix, that is, the primer degeneracy, the relative concentration of each primer and the total amount of primer. Amplification products of each of the nine studied HERV families are independently and specifically detected and quantified using the OLISA microarray. This method constitutes an improvement over previous pan-retrovirus amplification-based methods, which are mainly qualitative. Furthermore, as MD-PCR/OLISA simultaneously monitors several HERV families, it challenges single-family quantitative RT-PCR. Last, the protocol below provides general rules for the design of MD-PCR applications. Once primers have been designed and optimized, the procedure can be completed in 2 days.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: General outline of the MD-PCR/OLISA procedure.

Similar content being viewed by others

References

  1. Lander, E.S. et al. Initial sequencing and analysis of the human genome. Nature 409, 860–921 (2001).

    Article  CAS  Google Scholar 

  2. Belshaw, R., Katzourakis, A., Paces, J., Burt, A. & Tristem, M. High copy number in human endogenous retrovirus families is associated with copying mechanisms in addition to reinfection. Mol. Biol. Evol. 22, 814–817 (2005).

    Article  CAS  Google Scholar 

  3. Mallet, F. et al. The endogenous retroviral locus ERVWE1 is a bonafide gene involved in hominoid placental physiology. Proc. Natl. Acad. Sci. USA 101, 1731–1736 (2004).

    Article  CAS  Google Scholar 

  4. Antony, J.M. et al. Human endogenous retrovirus glycoprotein-mediated induction of redox reactants causes oligodendrocyte death and demyelination. Nat. Neurosci. 7, 1088–1095 (2004).

    Article  CAS  Google Scholar 

  5. Bjerregaard, B., Holck, S., Christensen, I.J. & Larsson, L.I. Syncytin is involved in breast cancer-endothelial cell fusions. Cell Mol. Life Sci. 63, 1906–1911 (2006).

    Article  CAS  Google Scholar 

  6. Strick, R. et al. Proliferation and cell-cell fusion of endometrial carcinoma are induced by the human endogenous retroviral Syncytin-1 and regulated by TGF-beta. J. Mol. Med. 85, 23–28 (2007).

    Article  CAS  Google Scholar 

  7. Schulte, A.M. et al. Human trophoblast and choriocarcinoma expression of the growth factor pleiotrophin attributable to germ-line insertion of an endogenous retrovirus. Proc. Natl. Acad. Sci. USA 93, 14759–14764 (1996).

    Article  CAS  Google Scholar 

  8. Ruda, V.M. et al. Tissue specificity of enhancer and promoter activities of a HERV-K(HML-2) LTR. Virus Res. 104, 11–16 (2004).

    Article  CAS  Google Scholar 

  9. Mager, D.L., Hunter, D.G., Schertzer, M. & Freeman, J.D. Endogenous retroviruses provide the primary polyadenylation signal for two new human genes (HHLA2 and HHLA3). Genomics 59, 255–263 (1999).

    Article  CAS  Google Scholar 

  10. Forsman, A. et al. Development of broadly targeted human endogenous gammaretroviral pol-based real time PCRs quantitation of RNA expression in human tissues. J. Virol. Methods 129, 16–30 (2005).

    Article  CAS  Google Scholar 

  11. Muradrasoli, S., Forsman, A., Hu, L., Blikstad, V. & Blomberg, J. Development of real-time PCRs for detection and quantitation of human MMTV-like (HML) sequences HML expression in human tissues. J. Vivol. Methods 136, 83–92 (2006).

    Article  CAS  Google Scholar 

  12. Seifarth, W. et al. Rapid identification of all known retroviral reverse transcriptase sequences with a novel versatile detection assay. AIDS Res. Hum. Retroviruses 16, 721–729 (2000).

    Article  CAS  Google Scholar 

  13. Seifarth, W. et al. Assessment of retroviral activity using a universal retrovirus chip. J Virol. Methods 112, 79–91 (2003).

    Article  CAS  Google Scholar 

  14. Seifarth, W. et al. Comprehensive analysis of human endogenous retrovirus transcriptional activity in human tissues with a retrovirus-specific microarray. J. Virol. 79, 341–352 (2005).

    Article  CAS  Google Scholar 

  15. Pichon, J.P., Bonnaud, B., Cleuziat, P. & Mallet, F. Multiplex degenerate PCR coupled with an oligo sorbent array for human endogenous retrovirus expression profiling. Nucleic Acids Res. 34, e46 (2006).

    Article  Google Scholar 

  16. Mallet, F. Comparison of competitive PCR and positive control based PCR. in Quantitative PCR Protocols. (eds. Kochanowski, B. & Reischl, U.) 103–116 (Humana Press, Totowa, 1999).

    Chapter  Google Scholar 

  17. Mallet, F. & Prudhomme, S. [Retroviral inheritance in man]. J. Soc. Biol. 198, 399–412 (2004).

    Article  CAS  Google Scholar 

  18. Tristem, M. Identification and characterization of novel human endogenous retrovirus families by phylogenetic screening of the human genome mapping project database. J. Virol. 74, 3715–3730 (2000).

    Article  CAS  Google Scholar 

  19. Benit, L., Lallemand, J.B., Casella, J.F., Philippe, H. & Heidmann, T. ERV-L elements: a family of endogenous retrovirus-like elements active throughout the evolution of mammals. J. Virol. 73, 3301–3308 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Bustin, S.A. Quantification of mRNA using real-time reverse transcription PCR (RT-PCR): trends and problems. J. Mol. Endocrinol. 29, 23–39 (2002).

    Article  CAS  Google Scholar 

  21. Thompson, J.D., Higgins, D.G. & Gibson, T.J. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position specific gap penalties and weight matrix choice. Nucleic Acids Res. 22, 4673–4680 (1994).

    Article  CAS  Google Scholar 

  22. Galtier, N., Gouy, M. & Gautier, C. SEA VIEW and PHYLO_WIN: two graphic tools for sequence alignment and molecular phylogeny. Comput. Appl. Biosci. 12, 543–548 (1996).

    CAS  PubMed  Google Scholar 

  23. Rozen, S. & Skaletsky, H.J. Primer3 on the WWW for general users and for biologist programmers. in Bioinformatics Methods and Protocols: Methods in Molecular Biology. (eds. Krawetz, S. & Misener, S.) 365–386 (Humana Press, Totowa, 2000).

    Google Scholar 

Download references

Acknowledgements

J.-Ph. Pichon was supported by doctoral fellowships from bioMérieux and l'Association Nationale de la Recherche Technique and from l'Association pour la Recherche sur le Cancer.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to François Mallet.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pichon, JP., Bonnaud, B. & Mallet, F. Quantitative multiplex degenerate PCR for human endogenous retrovirus expression profiling. Nat Protoc 1, 2831–2838 (2006). https://doi.org/10.1038/nprot.2006.475

Download citation

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nprot.2006.475

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing