Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Synthesis and enzymatic incorporation of a fluorescent pyrimidine ribonucleotide

Abstract

A detailed protocol for the synthesis of a fluorescent pyrimidine ribonucleoside analogue and its enzymatic incorporation into an RNA strand by transcription reactions is described. Furan-modified ribonucleoside triphosphate is synthesized in two steps with an overall yield of 33%. Incorporation of the triphosphate into an RNA oligomer occurs with nearly 225-fold amplification over the amount of the DNA template. Bacterial rRNA decoding site (known as the A-site) derived from this fluorescently modified ssRNA positively signals a binding event upon interaction with aminoglycoside antibiotics, its cognate ligands. The total time for the synthesis of ribonucleoside triphosphate is 6 days, and that for the incorporation of the nucleoside triphosphate and purification of the fluorescently labeled RNA 40 h.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Scheme for the synthesis of furan-conjugated triphosphate 3.
Figure 2: Scheme for the enzymatic incorporation of furan-modified triphosphate 3.
Figure 3: Absorption (50 μM, red) and fluorescence (5 μM, blue) spectra of nucleoside 2 in water.
Figure 4: Structure and fluorescence spectra of furan-labeled A-site duplex.

Similar content being viewed by others

References

  1. Wojczewski, C., Stolze, K. & Engels, J.W. Fluorescent oligonucleotides—versatile tools as probes and primers for DNA and RNA analysis. Synlett 1667–1678 (1999).

  2. Hawkins, M.E. Fluorescent pteridine nucleoside analogs: a window on DNA interactions. Cell Biochem. Biophys. 34, 257–281 (2001).

    Article  CAS  Google Scholar 

  3. Murphy, C.J. Photophysical probes of DNA sequence-directed structure and dynamics. Adv. Photochem. 26, 145–217 (2001).

    CAS  Google Scholar 

  4. Rist, M.J. & Marino, J.P. Fluorescent nucleotide base analogs as probes of nucleic acid structure, dynamics and interactions. Curr. Org. Chem. 6, 775–793 (2002).

    Article  CAS  Google Scholar 

  5. Okamoto, A., Saito, Y. & Saito, I. Design of base-discriminating fluorescent nucleosides. J. Photochem. Photobiol. C 6, 108–122 (2005).

    Article  CAS  Google Scholar 

  6. Ranasinghe, R.T. & Brown, T. Fluorescence based strategies for genetic analysis. Chem. Commun. 5487–5502 (2005).

  7. Silverman, A.P. & Kool, E.T. Detecting RNA and DNA with templated chemical reactions. Chem. Rev. 106, 3775–3789 (2006).

    Article  CAS  Google Scholar 

  8. Coleman, R.S. & Madaras, M.L. Synthesis of a novel coumarin C-riboside as a photophysical probe of oligonucleotide dynamics. J. Org. Chem. 63, 5700–5703 (1998).

    Article  CAS  Google Scholar 

  9. Strässler, C., Davis, N.E. & Kool, E.T. Novel nucleoside analogues with fluorophores replacing the DNA base. Helv. Chim. Acta 82, 2160–2171 (1999).

    Article  Google Scholar 

  10. Seela, F., Zulauf, M., Sauer, M. & Deimel, M. 7-substituted 7-deaza-2′-deoxyadenosines and 8-aza-7-deaza-2′-deoxyadenosines: fluorescence of DNA-base analogues induced by the 7-alkynyl side chain. Helv. Chim. Acta 83, 910–927 (2000).

    Article  CAS  Google Scholar 

  11. Coleman, R.S. & Mortensen, M.A. Stereocontrolled synthesis of anthracene beta-C-ribosides: fluorescent probes for photophysical studies of DNA. Tetrahedron Lett. 44, 1215–1219 (2003).

    Article  CAS  Google Scholar 

  12. Dash, C., Rausch, J.W. & Le Grice, S.F. Using pyrrolo-deoxycytosine to probe RNA/DNA hybrids containing the human immunodeficiency virus type-1 3′ polypurine tract. Nucleic Acids Res. 32, 1539–1547 (2004).

    Article  CAS  Google Scholar 

  13. Jiao, G.S., Kim, T.G., Topp, M.R. & Burgess, K. A blue-to-red energy-transfer thymidine analogue that functions in DNA. Org. Lett. 6, 1701–1704 (2004).

    Article  CAS  Google Scholar 

  14. Okamoto, A., Kanatani, K. & Saito, I. Pyrene-labeled base-discriminating fluorescent DNA probes for homogeneous SNP typing. J. Am. Chem. Soc. 126, 4820–4827 (2004).

    Article  CAS  Google Scholar 

  15. Gaballah, S.T., Vaught, J.D., Eaton, B.E. & Netzel, T.L. Charge-transfer excited state dynamics in DNA hairpins substituted with an ethylenylpyrenyl-dU electron source and halo-dU traps. J. Phys. Chem. B 109, 5927–5934 (2005).

    Article  CAS  Google Scholar 

  16. Okamoto, A., Tainaka, K. & Saito, I. A dielectric-sensitive fluorescent DNA probe for monitoring polarities on the interior of a DNA-binding protein. Bioconjug. Chem. 16, 1105–1111 (2005).

    Article  CAS  Google Scholar 

  17. Sandin, P. et al. Fluorescent properties of DNA base analogue tC upon incorporation into DNA—negligible influence of neighbouring bases on fluorescence quantum yield. Nucleic Acids Res. 33, 5019–5025 (2005).

    Article  CAS  Google Scholar 

  18. Asseline, U. Development and applications of fluorescent oligonucleotides. Curr. Org. Chem. 10, 491–518 (2006).

    Article  CAS  Google Scholar 

  19. Cho, Y. & Kool, E.T. Enzymatic synthesis of fluorescent oligomers assembled on a DNA backbone. Chem. Bio. Chem. 7, 669–672 (2006).

    Article  CAS  Google Scholar 

  20. Kim, S.J. & Kool, E.T. Sensing metal ions with DNA building blocks: fluorescent pyridobenzimidazole nucleosides. J. Am. Chem. Soc. 128, 6164–6171 (2006).

    Article  CAS  Google Scholar 

  21. Ward, D.C., Reich, E. & Stryer, L. Fluorescence studies of nucleotides and polynucleotides. I. Formycin, 2-aminopurine riboside, 2,6-diaminopurine riboside, and their derivatives. J. Biol. Chem. 244, 1228–1237 (1969).

    CAS  PubMed  Google Scholar 

  22. Jean, J.M. & Hall, K.B. 2-Aminopurine fluorescence quenching and lifetimes: role of base stacking. Proc. Natl. Acad. Sci. USA 98, 37–41 (2001).

    Article  CAS  Google Scholar 

  23. Kawai, M., Lee, M.J., Evans, K.O. & Nordlund, T.M. Temperature and base sequence dependence of 2-aminopurine fluorescence bands in single- and double-stranded oligodeoxynucleotides. J. Fluoresc. 11, 23–32 (2001).

    Article  CAS  Google Scholar 

  24. Rachofsky, E.L., Osman, R. & Ross, J.B. Probing structure and dynamics of DNA with 2-aminopurine: effects of local environment on fluorescence. Biochemistry 40, 946–956 (2001).

    Article  CAS  Google Scholar 

  25. Menger, M., Tuschl, T., Eckstein, F. & Porschke, D. Mg(2+)-dependent conformational changes in the hammerhead ribozyme. Biochemistry 35, 14710–14716 (1996).

    Article  CAS  Google Scholar 

  26. Kirk, S.R., Luedtke, N.W. & Tor, Y. 2-Aminopurine as a real-time probe of enzymatic cleavage and inhibition of hammerhead ribozymes. Bioorg. Med. Chem. 9, 2295–2301 (2001).

    Article  CAS  Google Scholar 

  27. Rist, M. & Marino, J. Association of an RNA kissing complex analyzed using 2-aminopurine fluorescence. Nucleic Acids Res. 29, 2401–2408 (2001).

    Article  CAS  Google Scholar 

  28. Lacourciere, K.A., Stivers, J.T. & Marino, J.P. Mechanism of neomycin and Rev peptide binding to the Rev responsive element of HIV-1 as determined by fluorescence and NMR spectroscopy. Biochemistry 39, 5630–5641 (2000).

    Article  CAS  Google Scholar 

  29. DeJong, E.S., Chang, C.E., Gilson, M.K. & Marino, J.P. Proflavine acts as a Rev inhibitor by targeting the high-affinity Rev binding site of the Rev responsive element of HIV-1. Biochemistry 42, 8035–8046 (2003).

    Article  CAS  Google Scholar 

  30. Kaul, M., Barbieri, C.M. & Pilch, D.S. Fluorescence-based approach for detecting and characterizing antibiotic-induced conformational changes in ribosomal RNA: comparing aminoglycoside binding to prokaryotic and eukaryotic ribosomal RNA sequences. J. Am. Chem. Soc. 126, 3447–3453 (2004).

    Article  CAS  Google Scholar 

  31. Shandrick, S. et al. Monitoring molecular recognition of the ribosomal decoding site. Angew. Chem. Int. Ed. Engl. 43, 3177–3182 (2004).

    Article  CAS  Google Scholar 

  32. Tam, V.K., Kwong, D. & Tor, Y. Fluorescent HIV-1 dimerization initiation site: design, properties, and use for ligand discovery. J. Am. Chem. Soc. 129, 3257–3266 (2007).

    Article  CAS  Google Scholar 

  33. Wu, P., Nordlund, T.M., Gildea, B. & McLaughlin, L.W. Base stacking and unstacking as determined from a DNA decamer containing a fluorescent base. Biochemistry 29, 6508–6514 (1990).

    Article  CAS  Google Scholar 

  34. Singleton, S.F. et al. Facile synthesis of a fluorescent deoxycytidine analogue suitable for probing the RecA nucleoprotein filament. Org. Lett. 3, 3919–3922 (2001).

    Article  CAS  Google Scholar 

  35. Liu, C. & Martin, C.T. Fluorescence characterization of the transcription bubble in elongation complexes of T7 RNA polymerase. J. Mol. Biol. 308, 465–475 (2001).

    Article  CAS  Google Scholar 

  36. Tinsley, R. & Walter, N.G. Pyrrolo-C as a fluorescent probe for monitoring RNA secondary structure formation. RNA 12, 522–529 (2006).

    Article  CAS  Google Scholar 

  37. Miyata, K. et al. Synthesis and fluorescent properties of bi- and tricyclic 4-N-carbamoyldeoxycytidine derivatives. J. Org. Chem. 72, 102–108 (2007).

    Article  CAS  Google Scholar 

  38. Greco, N.J. & Tor, Y. Furan decorated nucleoside analogues as fluorescent probes: synthesis, photophysical evaluation and site-specific incorporation. Tetrahedron 63, 3515–3527 (2007).

    Article  CAS  Google Scholar 

  39. Greco, N.J. & Tor, Y. Simple fluorescent pyrimidine analogs detect the presence of DNA abasic sites. J. Am. Chem. Soc. 127, 10784–10785 (2005).

    Article  CAS  Google Scholar 

  40. Greco, N.J. & Tor, Y. Synthesis and site-specific incorporation of a simple fluorescent pyrimidine. Nat. Protocols 2, 305–316 (2007).

    Article  CAS  Google Scholar 

  41. Srivatsan, S.G. & Tor, Y. Fluorescent pyrimidine ribonucleotide: synthesis, enzymatic incorporation and utilization. J. Am. Chem. Soc. 129, 2044–2053 (2007).

    Article  CAS  Google Scholar 

  42. Srivatsan, S.G. & Tor, Y. Using an emissive uridine analogue for assembling fluorescent HIV-1 TAR constructs. Tetrahedron 63, 3601–3607 (2007).

    Article  CAS  Google Scholar 

  43. Moffatt, J.G. A general synthesis of nucleoside-5′ triphosphates. Can. J. Chem. 42, 599–604 (1964).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by the US National Institutes of Health (GM 069773 and AI 47673).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yitzhak Tor.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Srivatsan, S., Tor, Y. Synthesis and enzymatic incorporation of a fluorescent pyrimidine ribonucleotide. Nat Protoc 2, 1547–1555 (2007). https://doi.org/10.1038/nprot.2007.222

Download citation

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nprot.2007.222

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing