Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Agrobacterium-mediated transformation of maize

Abstract

Maize may be transformed very efficiently using Agrobacterium tumefaciens-mediated methods. The most critical factor in the transformation protocol is the co-cultivation of healthy immature embryos of the correct developmental stage with A. tumefaciens; the embryos should be collected only from vigorous plants grown in well-conditioned glasshouses. With the protocol described here, approximately 50% of immature embryos from the inbred line A188 and 15% from inbred lines A634, H99 and W117 will produce transformants. About half of the transformed plants are expected to carry one or two copies of the transgenes, which are inherited by the progeny in a mendelian fashion. More than 90% of transformants are expected to be normal in morphology. The protocol takes about 3 months from the start of co-cultivation to the planting of transformants into pots.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Timeline of maize transformation protocol.
Figure 2: Size of immature embryo.
Figure 3: Isolation of immature embryo.
Figure 4: Guide to cutting type I callus for third selection and regeneration step.
Figure 5: Assay of segregation of transgene in detached leaves.
Figure 6: Transient expression of GUS gene in immature embryos.

Similar content being viewed by others

References

  1. Rhodes, C.A., Pierce, D.A., Mettler, I.J., Mascarenhas, D. & Detmer, J.J. Genetically transformed maize plants from protoplasts. Science 240, 204–207 (1988).

    Article  CAS  PubMed  Google Scholar 

  2. Gordon-Kamm, W. et al. Transformation of maize cells and regeneration of fertile transgenic plants. Plant Cell 2, 603–618 (1990).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Fromm, M.E. et al. Inheritance and expression of chimeric genes in the progeny of transgenic maize plants. Biotechnology 8, 833–839 (1990).

    CAS  PubMed  Google Scholar 

  4. D'Halluin, K., Bonne, K., Bossut, M., De Beuckeleer, M. & Leemans, J. Transgenic maize plants by tissue electroporation. Plant Cell 4, 1495–1505 (1992).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Frame, B.R. et al. Production of fertile transgenic maize plants by silicon carbide whisker-mediated transformation. Plant J. 6, 941–948 (1994).

    Article  CAS  Google Scholar 

  6. Koziel, M.G. et al. Field performance of elite transgenic maize plants expressing an insecticidal protein derived from Bacillus thuringiensis. Biotechnology 11, 194–200 (1993).

    CAS  Google Scholar 

  7. Armstrong, C. The first decade of maize transformation: a review and future perspective. Maydica 44, 101–109 (1999).

    Google Scholar 

  8. Register, J.C. III et al. Structure and function of selectable and non-selectable transgenes in maize after introduction by particle bombardment. Plant Mol. Biol. 25, 951–961 (1994).

    Article  CAS  PubMed  Google Scholar 

  9. Shou, H., Frame, B.A., Whitham, S.A. & Wang, K. Assessment of transgenic maize events produced by particle bombardment or Agrobacterium-mediated transformation. Mol. Breed. 13, 201–208 (2004).

    Article  CAS  Google Scholar 

  10. Hiei, Y., Ohta, S., Komari, T. & Kumashiro, T. Efficient transformation of rice (Oryza sativa L.) mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA. Plant J. 6, 271–282 (1994).

    Article  CAS  PubMed  Google Scholar 

  11. Ishida, Y. et al. High efficiency transformation of maize (Zea mays L.) mediated by Agrobacterium tumefaciens. Nat. Biotechnol. 14, 745–750 (1996).

    Article  CAS  PubMed  Google Scholar 

  12. Cheng, M. et al. Genetic transformation of wheat mediated by Agrobacterium tumefaciens. Plant Physiol. 115, 971–980 (1997).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Tingay, S. et al. Agrobacterium tumefaciens-mediated barley transformation. Plant J. 11, 1369–1376 (1997).

    Article  CAS  Google Scholar 

  14. Zhao, Z.-y. et al. Agrobacterium-mediated sorghum transformation. Plant Mol. Biol. 44, 789–798 (2000).

    Article  CAS  PubMed  Google Scholar 

  15. Negrotto, D., Jolley, M., Beer, S., Wenck, A.R. & Hansen, G. The use of phosphomannose-isomerase as a selectable marker to recover transgenic maize plants (Zea mays L.) via Agrobacterium transformation. Plant Cell Rep. 19, 798–803 (2000).

    Article  CAS  PubMed  Google Scholar 

  16. Nomura, M. et al. The evolution of C4 plants: acquisition of cis-regulatory sequences in the promoter of C4-type pyruvate, orthophosphate dikinase gene. Plant J. 22, 211–221 (2000).

    Article  CAS  PubMed  Google Scholar 

  17. Ohta, S., Ishida, Y. & Usami, S. Expression of cold-tolerant pyruvate, orthophosphate dikinase cDNA, and heterotetramer formation in transgenic maize plants. Transgenic Res. 13, 475–485 (2004).

    Article  CAS  PubMed  Google Scholar 

  18. Ohta, S., Ishida, Y. & Usami, S. High-level expression of cold-tolerant pyruvate, orthophosphate dikinase from a genomic clone with site-directed mutations in transgenic maize. Mol. Breed. 18, 29–38 (2006).

    Article  CAS  Google Scholar 

  19. Taniguchi, M. et al. The promoter for the maize C4 pyruvate, orthophosphate dikinase gene directs cell- and tissue-specific transcription in transgenic maize plants. Plant Cell Physiol. 41, 42–48 (2000).

    Article  CAS  PubMed  Google Scholar 

  20. Ishida, Y., Saito, H., Hiei, Y. & Komari, T. Improved protocol for transformation of maize (Zea mays L.) mediated by Agrobacterium tumefaciens. Plant Biotechnol. 20, 57–66 (2003).

    Article  CAS  Google Scholar 

  21. Hiei, Y., Ishida, Y., Kasaoka, K. & Komari, T. Improved frequency of transformation in rice and maize by treatment of immature embryos with centrifugation and heat prior to infection with Agrobacterium tumefaciens. Plant Cell Tissue Organ Cult. 87, 233–243 (2006).

    Article  Google Scholar 

  22. Zhao, Z.-y. et al. High throughput genetic transformation mediated by Agrobacterium tumefaciens in maize. Mol. Breed. 8, 323–333 (2001).

    Article  CAS  Google Scholar 

  23. De Block, M. et al. Engineering herbicide resistance in plants by expressing of a detoxifying enzyme. EMBO J. 6, 2513–2518 (1987).

    Article  CAS  Google Scholar 

  24. van den Elzen, P.J.M., Townsend, J., Lee, K.Y. & Bedbrook, J.R. A chimaeric hygromycin resistance gene as a selectable marker in plant cells. Plant Mol. Biol. 5, 299–302 (1985).

    Article  CAS  PubMed  Google Scholar 

  25. Hood, E.E. et al. Restriction endonuclease map of pTiBo542, a potential Ti-plasmid vector for genetic engineering of plants. Biotechnology 2, 702–709 (1984).

    CAS  Google Scholar 

  26. Komari, T., Halperin, W. & Nester, E.W. Physical and functional map of supervirulent Agrobacterium tumefaciens tumor-inducing plasmid pTiBo542. J. Bacteriol. 166, 88–94 (1986).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Sheng, J. & Citovsky, V. Agrobacterium-plant cell DNA transport: have virulence proteins, will travel. Plant Cell 8, 1699–1710 (1996).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Armstrong, C.L., Green, C.E. & Phillips, R.L. Development and availability of germplasm with high type II culture formation response. Maize Genet. Coop. News Lett. 65, 92–93 (1991).

    Google Scholar 

  29. Frame, B.R. et al. Agrobacterium tumefaciens-mediated transformation of maize embryos using a standard binary vector system. Plant Physiol. 129, 13–22 (2002).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Huang, X. & Wei, Z. Successful Agrobacterium-mediated genetic transformation of maize elite inbred lines. Plant Cell Tissue Organ Cult. 83, 187–200 (2005).

    Article  Google Scholar 

  31. Frame, B.R. et al. Improved Agrobacterium-mediated transformation of three maize inbred lines using MS salts. Plant Cell Rep. 25, 1024–1034 (2006).

    Article  CAS  PubMed  Google Scholar 

  32. Bajaj, Y.P.S. in Biotechnology in Agriculture and Forestry (ed. Bajaj, Y.P.S.) 3–23 (Springer-Verlag, Berlin, Heidelberg, 1994).

    Google Scholar 

  33. Frame, B.R., Paque, T. & Wang, K. in Methods in Molecular Biology (ed. Wang, K.) 185–199 (Humana Press Inc., Totowa, NJ, 2006).

    Google Scholar 

  34. Komari, T., Hiei, Y., Saito, Y., Murai, N. & Kumashiro, T. Vectors carrying two separate T-DNAs for co-transformation of higher plants mediated by Agrobacterium tumefaciens and segregation of transformants free from selection markers. Plant J. 10, 165–174 (1996).

    Article  CAS  PubMed  Google Scholar 

  35. Linsmaier, E. & Skoog, F. Organic growth factor requirements of tobacco tissue culture. Physiol. Plant 18, 100–127 (1965).

    Article  CAS  Google Scholar 

  36. Wang, M.-B. & Waterhouse, P.M. A rapid and simple method of assaying plants transformed with hygromycin and PPT resistance genes. Plant Mol. Biol. Rep. 15, 209–215 (1997).

    Article  CAS  Google Scholar 

  37. Miller, M. et al. High efficiency transgene segregation in co-transformation maize plants using an Agrobacterium tumefaciens 2 T-DNA binary system. Transgenic Res. 11, 381–396 (2002).

    Article  CAS  PubMed  Google Scholar 

  38. Ishida, Y. et al. Improved co-transformation of maize with vectors carrying two separate T-DNAs mediated by Agrobacterium tumefaciens. Plant Biotechnol. 21, 57–63 (2004).

    Article  CAS  Google Scholar 

  39. Hiei, Y. & Komari, T. Improved protocols for transformation of indica rice mediated by Agrobacterium tumefaciens. Plant Cell Tissue Organ Cult. 85, 271–283 (2006).

    Article  CAS  Google Scholar 

  40. Ohta, S., Mita, S., Hattori, T. & Nakamura, K. Construction and expression in tobacco of a β-glucuronidase (GUS) reporter gene containing an intron within the coding sequence. Plant Cell Physiol. 31, 805–813 (1990).

    CAS  Google Scholar 

  41. Jefferson, R.A. Assaying chimeric genes in plants: the GUS gene fusion system. Plant Mol. Biol. Rep. 5, 387–405 (1987).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Ms. E. Usami and Ms. M. Noguchi for skillful assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuji Ishida.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ishida, Y., Hiei, Y. & Komari, T. Agrobacterium-mediated transformation of maize. Nat Protoc 2, 1614–1621 (2007). https://doi.org/10.1038/nprot.2007.241

Download citation

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nprot.2007.241

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing