Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Quantitative analysis of chromosome conformation capture assays (3C-qPCR)

Abstract

Chromosome conformation capture (3C) technology is a pioneering methodology that allows in vivo genomic organization to be explored at a scale encompassing a few tens to a few hundred kilobase-pairs. Understanding the folding of the genome at this scale is particularly important in mammals where dispersed regulatory elements, like enhancers or insulators, are involved in gene regulation. 3C technology involves formaldehyde fixation of cells, followed by a polymerase chain reaction (PCR)-based analysis of the frequency with which pairs of selected DNA fragments are crosslinked in the population of cells. Accurate measurements of crosslinking frequencies require the best quantification techniques. We recently adapted the real-time TaqMan PCR technology to the analysis of 3C assays, resulting in a method that more accurately determines crosslinking frequencies than current semiquantitative 3C strategies that rely on measuring the intensity of ethidium bromide-stained PCR products separated by gel electrophoresis. Here, we provide a detailed protocol for this method, which we have named 3C-qPCR. Once preliminary controls and optimizations have been performed, the whole procedure (3C assays and quantitative analyses) can be completed in 7–9 days.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic diagram showing the principles of 3C and qPCR.
Figure 2: 3C-qPCR analysis of long-distance interactions at the mouse imprinted Igf2/H19 locus.

Similar content being viewed by others

References

  1. Carter, D., Chakalova, L., Osborne, C.S., Dai, Y.F. & Fraser, P. Long-range chromatin regulatory interactions in vivo. Nat. Genet. 32, 623–626 (2002).

    Article  CAS  Google Scholar 

  2. Dekker, J., Rippe, K., Dekker, M. & Kleckner, N. Capturing chromosome conformation. Science 295, 1306–1311 (2002).

    Article  CAS  Google Scholar 

  3. Dekker, J. A closer look at long-range chromosomal interactions. Trends Biochem. Sci. 28, 277–280 (2003).

    Article  CAS  PubMed Central  Google Scholar 

  4. Splinter, E., Grosveld, F. & de Laat, W. 3C technology: analyzing the spatial organization of genomic loci in vivo. Methods Enzymol. 375, 493–507 (2004).

    Article  CAS  PubMed Central  Google Scholar 

  5. Tolhuis, B., Palstra, R.J., Splinter, E., Grosveld, F. & de Laat, W. Looping and interaction between hypersensitive sites in the active beta-globin locus. Mol. Cell 10, 1453–1465 (2002).

    Article  CAS  Google Scholar 

  6. Dostie, J. & Dekker, J. Mapping networks of physical interactions between genomic elements using 5C technology. Nat. Protoc. 2, 988–1002 (2007).

    Article  CAS  Google Scholar 

  7. Dostie, J. et al. Chromosome Conformation Capture Carbon Copy (5C): a massively parallel solution for mapping interactions between genomic elements. Genome Res. 16, 1299–1309 (2006).

    Article  CAS  PubMed Central  Google Scholar 

  8. Lomvardas, S. et al. Interchromosomal interactions and olfactory receptor choice. Cell 126, 403–413 (2006).

    Article  CAS  Google Scholar 

  9. Simonis, M. et al. Nuclear organization of active and inactive chromatin domains uncovered by chromosome conformation capture-on-chip (4C). Nat. Genet. 38, 1348–1354 (2006).

    Article  CAS  Google Scholar 

  10. Wurtele, H. & Chartrand, P. Genome-wide scanning of HoxB1-associated loci in mouse ES cells using an open-ended Chromosome Conformation Capture methodology. Chromosome Res. 14, 477–495 (2006).

    Article  Google Scholar 

  11. Zhao, Z. et al. Circular chromosome conformation capture (4C) uncovers extensive networks of epigenetically regulated intra- and interchromosomal interactions. Nat. Genet. 38, 1341–1347 (2006).

    Article  CAS  Google Scholar 

  12. Heid, C.A., Stevens, J., Livak, K.J. & Williams, P.M. Real time quantitative PCR. Genome Res. 6, 986–994 (1996).

    Article  CAS  Google Scholar 

  13. Livak, K.J., Flood, S.J., Marmaro, J., Giusti, W. & Deetz, K. Oligonucleotides with fluorescent dyes at opposite ends provide a quenched probe system useful for detecting PCR product and nucleic acid hybridization. PCR Methods Appl. 4, 357–362 (1995).

    Article  CAS  PubMed Central  Google Scholar 

  14. Lutfalla, G. & Uze, G. Performing quantitative reverse-transcribed polymerase chain reaction experiments. Methods Enzymol. 410, 386–400 (2006).

    Article  CAS  PubMed Central  Google Scholar 

  15. Vernimmen, D., De Gobbi, M., Sloane-Stanley, J.A., Wood, W.G. & Higgs, D.R. Long-range chromosomal interactions regulate the timing of the transition between poised and active gene expression. EMBO J. 26, 2041–2051 (2007).

    Article  CAS  PubMed Central  Google Scholar 

  16. Splinter, E. et al. CTCF mediates long-range chromatin looping and local histone modification in the beta-globin locus. Genes Dev. 20, 2349–2354 (2006).

    Article  CAS  PubMed Central  Google Scholar 

  17. Holland, P.M., Abramson, R.D., Watson, R. & Gelfand, D.H. Detection of specific polymerase chain reaction product by utilizing the 5′— —3′ exonuclease activity of Thermus aquaticus DNA polymerase. Proc. Natl. Acad. Sci. USA 88, 7276–7280 (1991).

    Article  CAS  PubMed Central  Google Scholar 

  18. Dekker, J. The three “C”s of chromosome conformation capture: controls, controls, controls. Nat. Methods 3, 17–21 (2006).

    Article  CAS  Google Scholar 

  19. Palstra, R.J. et al. The beta-globin nuclear compartment in development and erythroid differentiation. Nat. Genet. 35, 190–194 (2003).

    Article  CAS  Google Scholar 

  20. Weber, M. et al. A real-time polymerase chain reaction assay for quantification of allele ratios and correction of amplification bias. Anal. Biochem. 320, 252–258 (2003).

    Article  CAS  PubMed Central  Google Scholar 

  21. Kurukuti, S. et al. CTCF binding at the H19 imprinting control region mediates maternally inherited higher-order chromatin conformation to restrict enhancer access to Igf2. Proc. Natl. Acad. Sci. USA 103, 10684–10689 (2006).

    Article  CAS  PubMed Central  Google Scholar 

  22. Murrell, A., Heeson, S. & Reik, W. Interaction between differentially methylated regions partitions the imprinted genes Igf2 and H19 into parent-specific chromatin loops. Nat. Genet. 36, 889–893 (2004).

    Article  CAS  Google Scholar 

  23. Milligan, L. et al. H19 gene expression is up-regulated exclusively by stabilization of the RNA during muscle cell differentiation. Oncogene 19, 5810–5816 (2000).

    Article  CAS  PubMed Central  Google Scholar 

  24. Leighton, P.A., Saam, J.R., Ingram, R.S., Stewart, C.L. & Tilghman, S.M. An enhancer deletion affects both H19 and Igf2 expression. Genes Dev. 9, 2079–2089 (1995).

    Article  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Robert Feil and Franck Court for discussion and comments on the manuscript. This work was supported by grants from the Association pour la Recherche contre le Cancer (ARC contract no. 3279), the “GIS Longévité” (contract no. GISLO401), the “Fond National de la Science” (ACI jeune chercheur) given to T. Forné and by funds from the “Centre National de la Recherche Scientifique” (CNRS). C.B. was supported by an ARC fellowship (JR/MLD/MDV—P05/2 and P06/2). W.L. was supported by grants from the Dutch Scientific Organization (NWO) (016-006-026) and (912-04-082). J.D. was supported by a grant from the NIH (HG003143).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wouter de Laat or Thierry Forné.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hagège, H., Klous, P., Braem, C. et al. Quantitative analysis of chromosome conformation capture assays (3C-qPCR). Nat Protoc 2, 1722–1733 (2007). https://doi.org/10.1038/nprot.2007.243

Download citation

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nprot.2007.243

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing