Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Fabrication of carbohydrate chips and their use to probe protein–carbohydrate interactions

Abstract

Carbohydrate microarrays have received considerable attention as an advanced technology for the rapid analysis of carbohydrate–protein interactions. This protocol provides detailed procedures for the preparation of carbohydrate microarrays by immobilizing hydrazide-conjugated carbohydrates on epoxide-derivatized glass slides. In addition, we describe the use we make of these microarrays in glycomics research. Unlike other techniques that require large amounts of samples and long assay times, carbohydrate microarrays are used to carry out the rapid assessment of a number of carbohydrate-recognition events with tiny amounts of carbohydrate samples. Furthermore, the microarray technology is also utilized for the rapid assay of enzyme activities. We are able to routinely prepare carbohydrate microarrays within 12 h by using hydrazide-conjugated carbohydrates and apply these microarrays for the studies of glycan–protein interactions within 8 h.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Fabrication of carbohydrate microarrays and their applications.
Figure 2
Figure 3
Figure 4
Figure 5: Applications of carbohydrate microarrays.

Similar content being viewed by others

References

  1. Bertozzi, C.R. & Kiessling, L.L. Chemical glycobiology. Science 291, 2357–2364 (2001).

    Article  CAS  PubMed  Google Scholar 

  2. Varki, A. Biological roles of oligosaccharides: all of the theories are correct. Glycobiology 3, 97–130 (1993).

    Article  CAS  Google Scholar 

  3. Roth, J. Protein N-glycosylation along the secretory pathway: relationship to organelle topography and function, protein quality control, and cell interactions. Chem. Rev. 102, 285–303 (2002).

    Article  CAS  Google Scholar 

  4. Smith, A.E. & Helenius, A. How viruses enter animal cells. Science 304, 237–242 (2004).

    Article  CAS  PubMed  Google Scholar 

  5. Fuster, M.M. & Esko, J.D. The sweet and sour of cancer: glycans as novel therapeutic targets. Nat. Rev. Cancer 5, 526–542 (2005).

    Article  CAS  Google Scholar 

  6. Lasky, L.A. Selectins: interpreters of cell-specific carbohydrate information during inflammation. Science 258, 964–969 (1992).

    Article  CAS  PubMed  Google Scholar 

  7. Scanlan, C.N., Offer, J., Zitzmann, N. & Dwek, R.A. Exploiting the defensive sugars of HIV-1 for drug and vaccine design. Nat. Insight 446, 1038–1045 (2007).

    CAS  Google Scholar 

  8. Lis, H. & Sharon, N. Lectins: cell-agglutinating and sugar-specific proteins. Science 177, 949–959 (1972).

    Article  PubMed  Google Scholar 

  9. McCoy, J.P., Jr, Varani, J. & Goldstein, I.J. Enzyme-linked lectin assay (ELLA): use of alkaline phosphatase-conjugated Griffonia simplicifolia B4 isolectin for the detection of alpha-D-galactopyranosyl end groups. Anal. Biochem. 130, 437–444 (1983).

    Article  CAS  PubMed  Google Scholar 

  10. Duverger, E., Frison, N., Roche, A.C. & Monsingny, M. Carbohydrate-lectin interactions assessed by surface plasmon resonance. Biocheimie 85, 167–179 (2003).

    Article  CAS  Google Scholar 

  11. Dam, T.K. & Brewer, C.F. Thermodynamic studies of lectin-carbohydrate interactions by isothermal titration calorimetry. Chem. Rev. 102, 387–430 (2002).

    Article  CAS  PubMed  Google Scholar 

  12. Wormald, M.R. et al. Conformational studies of oligosaccharides and glycopeptides: complementarity of NMR, X-ray crystallography, and molecular modeling. Chem. Rev. 102, 371–386 (2002).

    Article  CAS  PubMed  Google Scholar 

  13. Park, S. & Shin, I. Fabrication of carbohydrate chips for studying protein-carbohydrate interactions. Angew. Chem. Int. Ed. 41, 3180–3182 (2002).

    Article  CAS  Google Scholar 

  14. Wang, D., Liu, S., Trummer, B.J., Deng, C. & Wang, A. Carbohydrate microarrays for the recognition of cross-reactive molecular markers of microbes and host cells. Nat. Biotechnol. 20, 275–281 (2002).

    Article  CAS  PubMed  Google Scholar 

  15. Fukui, S., Feizi, T., Galustian, C., Lawson, A.M. & Chai, W. Oligosaccharide microarrays for high-throughput detection and specificity assignments of carbohydrate-protein interactions. Nat. Biotechnol. 20, 1011–1017 (2002).

    Article  CAS  PubMed  Google Scholar 

  16. Houseman, B.T. & Mrksich, M. Carbohydrate arrays for the evaluation of protein binding and enzymatic modification. Chem. Biol. 9, 443–454 (2002).

    Article  CAS  PubMed  Google Scholar 

  17. Park, S., Lee, M.R., Pyo, S.J. & Shin, I. Carbohydrate chips for studying high-throughput carbohydrate-protein interactions. J. Am. Chem. Soc. 126, 4812–4819 (2004).

    Article  CAS  PubMed  Google Scholar 

  18. Lee, M.R. & Shin, I. Fabrication of chemical microarrays by efficient immobilization of hydrazide-linked substances on epoxide-coated glass surfaces. Angew. Chem. Int. Ed. 44, 2881–2884 (2005).

    Article  CAS  Google Scholar 

  19. Park, S. & Shin, I. Carbohydrate microarrays for assaying galactosyltransferase activity. Org. Lett. 9, 1675–1678 (2007).

    Article  CAS  PubMed  Google Scholar 

  20. Lee, M.R. & Shin, I. Facile preparation of carbohydrate microarrays by site-specific, covalent immobilization of unmodified carbohydrates on hydrazide-coated glass slides. Org. Lett. 7, 4269–4272 (2005).

    Article  CAS  PubMed  Google Scholar 

  21. Shin, I., Cho, J.W. & Boo, D.W. Carbohydrate arrays for functional studies of carbohydrates. Comb. Chem. High Throughput Screening 7, 565–574 (2004).

    Article  CAS  Google Scholar 

  22. Shin, I., Park, S. & Lee, M.R. Carbohydrate microarrays: an advanced technology for functional studies of glycans. Chem. Eur. J. 11, 2894–2901 (2005).

    Article  CAS  PubMed  Google Scholar 

  23. Shin, I., Tae, J. & Park, S. Carbohydrate microarray technology for functional glycomics. Curr. Chem. Biol. 1, 187–199 (2007).

    CAS  Google Scholar 

  24. Shin, I. Carbohydrate microarrays for high-throughput analysis of carbohydrate-protein interactions. in Protein–Carbohydrate Interactions in Infectious Diseases (ed. Carole A. Bewley) 221–246 (RSC Publishing, Cambridge, UK, 2006).

    Google Scholar 

  25. Blixt, O. et al. Printed covalent glycan array for ligand profiling of diverse glycan binding proteins. Proc. Natl. Acad. Sci. USA 101, 17033–17038 (2004).

    Article  CAS  PubMed  Google Scholar 

  26. de Paz, J.L., Noti, C. & Seeberger, P.H. Microarrays of synthetic heparin oligosaccharides. J. Am. Chem. Soc. 128, 2766–2767 (2006).

    Article  CAS  PubMed  Google Scholar 

  27. Disney, M.D. & Seeberger, P.H. The use of carbohydrate microarrays to study carbohydrate-cell interactions and to detect pathogens. Chem. Biol. 11, 1701–1707 (2004).

    Article  CAS  PubMed  Google Scholar 

  28. Takahashi, T., Adachi, M., Matsuda, A. & Doi, T. Combinatorial synthesis of trisaccharides via solution-phase one-pot glycosylation. Tetrahedron Lett. 41, 2599–2603 (2000).

    Article  CAS  Google Scholar 

  29. Sharma, G.V.M. & Krishna, P.R. A practical synthesis of 2-azidoethyl α-glycosides: useful spacer-arm glycosides for the synthesis of neoglycoconjugates. Carbohydr. Res. 243, 393–397 (1993).

    Article  CAS  PubMed  Google Scholar 

  30. Fazio, F., Bryan, M.C., Blixt, O., Paulson, J.C. & Wong, C.H. Synthesis of sugar arrays in microtiter plate. J. Am. Chem. Soc. 124, 14397–14402 (2002).

    Article  CAS  PubMed  Google Scholar 

  31. Moon, J.H., Shin, J.W., Kim, S.Y. & Park, J.W. Formation of uniform aminosilane thin layer: an imine formation to measure relative surface density of the amino group. Langmuir 12, 4621–4624 (1996).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the NRL and Protein Chip Technology programs of MOST/KOSEF. S.P. thanks the BK21 program (KRF).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Injae Shin.

Supplementary information

Supplementary Methods

Fabrication of Carbohydrate Chips and Their Use to Probe Protein-Carbohydrate Interactions (PDF 76 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Park, S., Lee, MR. & Shin, I. Fabrication of carbohydrate chips and their use to probe protein–carbohydrate interactions. Nat Protoc 2, 2747–2758 (2007). https://doi.org/10.1038/nprot.2007.373

Download citation

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nprot.2007.373

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing