Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Quantification of DNA damage products resulting from deamination, oxidation and reaction with products of lipid peroxidation by liquid chromatography isotope dilution tandem mass spectrometry

Abstract

The analysis of damage products as biomarkers of inflammation has been hampered by a poor understanding of the chemical biology of inflammation, the lack of sensitive analytical methods and a focus on single chemicals as surrogates for inflammation. To overcome these problems, we developed a general and sensitive liquid chromatographic tandem mass spectrometry (LC/MS-MS) method to quantify, in a single DNA sample, the nucleoside forms of seven DNA lesions reflecting the range of chemistries associated with inflammation: 2′-deoxyuridine, 2′-deoxyxanthosine and 2′-deoxyinosine from nitrosative deamination; 8-oxo-2′-deoxyguanosine from oxidation; and 1,N2-etheno-2′-deoxyguanosine, 1,N6-etheno-2′-deoxyadenosine and 3,N4-etheno-2′-deoxycytidine arising from reaction of DNA with lipid peroxidation products. Using DNA purified from cells or tissues under conditions that minimize artifacts, individual nucleosides are purified by HPLC and quantified by isotope-dilution, electrospray ionization LC/MS-MS. The method can be applied to other DNA damage products and requires 4–6 d to complete depending upon the number of samples.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The chemical biology of inflammation.
Figure 2: DNA damage products associated with the chemical mediators of inflammation.
Figure 3
Figure 4: Reversed-phase HPLC separation of normal and modified nucleoside standards.

Similar content being viewed by others

References

  1. Coussens, L.M. & Werb, Z. Inflammation and cancer. Nature 420, 860–867 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Ohshima, H. & Bartsch, H. Chronic infections and inflammatory processes as cancer risk factors: possible role of nitric oxide in carcinogenesis. Mutat. Res. 305, 253–264 (1994).

    Article  CAS  PubMed  Google Scholar 

  3. Suerbaum, S. & Michetti, P. Helicobacter pylori infection. N. Engl. J. Med. 347, 1175–1186 (2002).

    Article  CAS  PubMed  Google Scholar 

  4. Dedon, P.C. & Tannenbaum, S.R. Reactive nitrogen species in the chemical biology of inflammation. Arch. Biochem. Biophys. 423, 12–22 (2004).

    Article  CAS  PubMed  Google Scholar 

  5. Halliwell, B. Effect of diet on cancer development: is oxidative DNA damage a biomarker? Free Radic. Biol. Med. 32, 968–974 (2002).

    Article  CAS  PubMed  Google Scholar 

  6. Shacter, E. & Weitzman, S.A. Chronic inflammation and cancer. Oncology 16, 217–226, 229 (2002).

    PubMed  Google Scholar 

  7. Ohshima, H., Tatemichi, M. & Sawa, T. Chemical basis of inflammation-induced carcinogenesis. Arch. Biochem. Biophys. 417, 3–11 (2003).

    Article  CAS  PubMed  Google Scholar 

  8. Lewis, R.S., Tamir, S., Tannenbaum, S.R. & Deen, W.M. Kinetic analysis of the fate of nitric oxide synthesized by macrophages in vitro. J. Biol. Chem. 270, 29350–29355 (1995).

    Article  CAS  PubMed  Google Scholar 

  9. Dong, M., Wang, C., Deen, W.M. & Dedon, P.C. Absence of 2′-deoxyoxanosine and presence of abasic sites in DNA exposed to nitric oxide at controlled physiological concentrations. Chem. Res. Toxicol. 16, 1044–1055 (2003).

    Article  CAS  PubMed  Google Scholar 

  10. Cadet, J., Douki, T. & Ravanat, J.L. One-electron oxidation of DNA and inflammation processes. Nat. Chem. Biol. 2, 348–349 (2006).

    Article  CAS  PubMed  Google Scholar 

  11. Niles, J.C., Wishnok, J.S. & Tannenbaum, S.R. Peroxynitrite-induced oxidation and nitration products of guanine and 8-oxoguanine: structures and mechanisms of product formation. Nitric Oxide 14, 109–121 (2006).

    Article  CAS  PubMed  Google Scholar 

  12. Yu, H., Venkatarangan, L., Wishnok, J.S. & Tannenbaum, S.R. Quantitation of four guanine oxidation products from reaction of DNA with varying doses of peroxynitrite. Chem. Res. Toxicol. 18, 1849–1857 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Lee, S.H., Arora, J.A., Oe, T. & Blair, I.A. 4-Hydroperoxy-2-nonenal-induced formation of 1,N2-etheno-2′-deoxyguanosine adducts. Chem. Res. Toxicol. 18, 780–786 (2005).

    Article  CAS  PubMed  Google Scholar 

  14. Nair, J., Barbin, A., Velic, I. & Bartsch, H. Etheno DNA-base adducts from endogenous reactive species. Mutat. Res. 424, 59–69 (1999).

    Article  CAS  PubMed  Google Scholar 

  15. Dedon, P.C., Plastaras, J.P., Rouzer, C.A. & Marnett, L.J. Indirect mutagenesis by oxidative DNA damage: formation of the pyrimidopurinone adduct of deoxyguanosine by base propenal. Proc. Natl. Acad. Sci. USA 95, 11113–11116 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Zhou, X., Taghizadeh, K. & Dedon, P.C. Chemical and biological evidence for base propenals as the major source of the endogenous M1dG adduct in cellular DNA. J. Biol. Chem. 280, 25377–25382 (2005).

    Article  CAS  PubMed  Google Scholar 

  17. Marnett, L.J. Oxy radicals, lipid peroxidation and DNA damage. Toxicology 181–182, 219–222 (2002).

    Article  PubMed  Google Scholar 

  18. Karakaya, A., Jaruga, P., Bohr, V.A., Grollman, A.P. & Dizdaroglu, M. Kinetics of excision of purine lesions from DNA by Escherichia coli Fpg protein. Nucleic. Acids. Res. 25, 474–479 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Senturker, S. & Dizdaroglu, M. The effect of experimental conditions on the levels of oxidatively modified bases in DNA as measured by gas chromatography-mass spectrometry: how many modified bases are involved? Prepurification or not? Free Radic. Biol. Med. 27, 370–380 (1999).

    Article  CAS  PubMed  Google Scholar 

  20. Cooke, M.S., Olinski, R. & Evans, M.D. Does measurement of oxidative damage to DNA have clinical significance? Clin. Chim. Acta. 365, 30–49 (2006).

    Article  CAS  PubMed  Google Scholar 

  21. Dizdaroglu, M., Jaruga, P. & Rodriguez, H. Identification and quantification of 8,5′-cyclo-2′-deoxy-adenosine in DNA by liquid chromatography/mass spectrometry. Free Radic. Biol. Med. 30, 774–784 (2001).

    Article  CAS  PubMed  Google Scholar 

  22. Rodriguez, H. et al. Lymphoblasts of women with BRCA1 mutations are deficient in cellular repair of 8,5′-cyclopurine-2′-deoxynucleosides and 8-hydroxy-2′-deoxyguanosine. Biochemistry 46, 2488–2496 (2007).

    Article  CAS  PubMed  Google Scholar 

  23. Cadet, J. et al. Radiation-induced DNA damage: formation, measurement, and biochemical features. J. Environ. Pathol. Toxicol. Oncol. 23, 33–43 (2004).

    Article  CAS  PubMed  Google Scholar 

  24. Pouget, J.P. et al. Formation of modified DNA bases in cells exposed either to gamma radiation or to high-LET particles. Radiat. Res. 157, 589–595 (2002).

    Article  CAS  PubMed  Google Scholar 

  25. Dedon, P. et al. Challenges in developing DNA and RNA biomarkers of inflammation. Biomarkers Med. 1, 293–312 (2007).

    Article  CAS  Google Scholar 

  26. Hu, C.W. et al. Comparison of analyses of urinary 8-hydroxy-2′-deoxyguanosine by isotope-dilution liquid chromatography with electrospray tandem mass spectrometry and by enzyme-linked immunosorbent assay. Rapid. Commun. Mass. Spectrom. 18, 505–510 (2004).

    Article  CAS  PubMed  Google Scholar 

  27. Randerath, K. & Randerath, E. 32P-postlabeling methods for DNA adduct detection: overview and critical evaluation. Drug Metab. Rev. 26, 67–85 (1994).

    Article  CAS  PubMed  Google Scholar 

  28. Dizdaroglu, M., Jaruga, P., Birincioglu, M. & Rodriguez, H. Free radical-induced damage to DNA: mechanisms and measurement. Free Radic. Biol. Med. 32, 1102–1115 (2002).

    Article  CAS  PubMed  Google Scholar 

  29. Cadet, J. et al. Facts and artifacts in the measurement of oxidative base damage to DNA. Free Radic. Res. 29, 541–550 (1998).

    Article  CAS  PubMed  Google Scholar 

  30. Dizdaroglu, M. Facts about the artifacts in the measurement of oxidative DNA base damage by gas chromatography-mass spectrometry. Free Radic. Res. 29, 551–563 (1998).

    Article  CAS  PubMed  Google Scholar 

  31. Cadet, J. Assesment of oxidative base damage to isolated and cellular DNA by HPLC-MS/MS measurement. Free Radic. Biol. Med. 33, 441–449 (2002).

    Article  CAS  PubMed  Google Scholar 

  32. Roberts, D.W., Churchwell, M.I., Beland, F.A., Fang, J.L. & Doerge, D.R. Quantitative analysis of etheno-2′-deoxycytidine DNA adducts using on-line immunoaffinity chromatography coupled with LC/ES-MS/MS detection. Anal. Chem. 73, 303–309 (2001).

    Article  CAS  PubMed  Google Scholar 

  33. Dong, M. & Dedon, P.C. Relatively small increases in the steady-state levels of nucleobase deamination products in DNA from human TK6 cells exposed to toxic levels of nitric oxide. Chem. Res. Toxicol. 19, 50–57 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. ESCODD Comparative analysis of baseline 8-oxo-7,8-dihydroguanine in mammalian cell DNA, by different methods in different laboratories: an approach to consensus. Carcinogenesis 23, 2129–2133 (2002).

    Article  Google Scholar 

  35. Pang, B. et al. Lipid peroxidation dominates the chemistry of DNA adduct formation in a mouse model of inflammation. Carcinogenesis 28, 1807–1813 (2007).

    Article  CAS  PubMed  Google Scholar 

  36. Nair, J. et al. Etheno adducts in spleen DNA of SJL mice stimulated to overproduce nitric oxide. Carcinogenesis 19, 2081–2084 (1998).

    Article  CAS  PubMed  Google Scholar 

  37. Cadet, J., Douki, T., Gasparutto, D. & Ravanat, J.L. Oxidative damage to DNA: formation, measurement and biochemical features. Mutat. Res. 531, 5–23 (2003).

    Article  CAS  PubMed  Google Scholar 

  38. Chen, B., Bohnert, T., Zhou, X. & Dedon, P.C. 5′-(2-Phosphoryl-1,4-dioxobutane) as a product of 5′-oxidation of deoxyribose in DNA: elimination as trans-1,4-dioxo-2-butene and approaches to analysis. Chem. Res. Toxicol. 17, 1406–1413 (2004).

    Article  CAS  PubMed  Google Scholar 

  39. Kusmierek, J.T. & Singer, B. 1,N2-ethenodeoxyguanosine: properties and formation in chloroacetaldehyde-treated polynucleotides and DNA. Chem. Res. Toxicol. 5, 634–638 (1992).

    Article  CAS  PubMed  Google Scholar 

  40. Zhang, W., Rieger, R., Iden, C. & Johnson, F. Synthesis of 3,N4-etheno, 3,N4-ethano, and 3-(2-hydroxyethyl) derivatives of 2′-deoxycytidine and their incorporation into oligomeric DNA. Chem. Res. Toxicol. 8, 148–156 (1995).

    Article  CAS  PubMed  Google Scholar 

  41. Doerge, D.R., Churchwell, M.I., Fang, J.L. & Beland, F.A. Quantification of etheno-DNA adducts using liquid chromatography, on-line sample processing, and electrospray tandem mass spectrometry. Chem. Res. Toxicol. 13, 1259–1264 (2000).

    Article  CAS  PubMed  Google Scholar 

  42. Hillestrom, P.R., Weimann, A. & Poulsen, H.E. Quantification of urinary etheno-DNA adducts by column-switching LC/APCI-MS/MS. J. Am. Soc. Mass. Spectrom. 17, 605–610 (2006).

    Article  CAS  PubMed  Google Scholar 

  43. Green, T. & Hathway, D.E. Interactions of vinyl chloride with rat-liver DNA in vivo. Chem. Biol. Interact. 22, 211–224 (1978).

    Article  CAS  PubMed  Google Scholar 

  44. Singh, R., McEwan, M., Lamb, J.H., Santella, R.M. & Farmer, P.B. An improved liquid chromatography/tandem mass spectrometry method for the determination of 8-oxo-7,8-dihydro-2′-deoxyguanosine in DNA samples using immunoaffinity column purification. Rapid. Commum. Mass. Spectrom. 17, 126–134 (2003).

    Article  CAS  Google Scholar 

  45. Suzuki, T., Yamaoka, R., Nishi, M., Ide, H. & Makino, K. Isolation and characterization of a novel product, 2′-deoxyoxanosine, from 2′-deoxyguanosine, oligodeoxynucleotide, and calf thymus DNA treated with nitrous acid and nitric oxide. J. Am. Chem. Soc. 118, 2515–2516 (1996).

    Article  CAS  Google Scholar 

  46. Stimson, M.M. & Reuter, M.A. Ultraviolet absorption spectra of nitrogenous heterocycles. VII. The effect of hydroxy substitution on the ultraviolet absorption of the series: hypoxanthine, xanthine and uric acid. J. Am. Chem. Soc. 65, 153–155 (1943).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge financial support for this work from the National Institutes of Health (ES002109, CA116318, CA26735, ES59790, CA103146, CA110261, S10RR023783).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter C Dedon.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Taghizadeh, K., McFaline, J., Pang, B. et al. Quantification of DNA damage products resulting from deamination, oxidation and reaction with products of lipid peroxidation by liquid chromatography isotope dilution tandem mass spectrometry. Nat Protoc 3, 1287–1298 (2008). https://doi.org/10.1038/nprot.2008.119

Download citation

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nprot.2008.119

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing