Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

A protocol for Agrobacterium-mediated transformation of Brachypodium distachyon community standard line Bd21

Abstract

Brachypodium distachyon is a novel model system for structural and functional genomics studies of temperate grasses because of its biological and genetic attributes. Recently, the genome sequence of the community standard line Bd21 has been released and the availability of an efficient transformation system is critical for the discovery and validation of the function of Brachypodium genes. Here, we provide an improved procedure for the facile and efficient Agrobacterium-mediated transformation of line Bd21. The protocol relies on the transformation of compact embryogenic calli derived from immature embryos using visual and chemical screening of transformed tissues and plants. The combination of green fluorescent protein expression and hygromycin resistance enables early identification of transformation events and drastically reduces the quantity of tissue to be handled throughout the selection process. Approximately eight independent fully developed transgenic Bd21 plants can be produced from each immature embryo, enabling the generation of thousands of T-DNA lines. The process—from wild-type seeds to transgenic T1 seeds—takes 8 months to complete.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Binary vector pVec8-GFP used to transform B. distachyon genotype Bd21.
Figure 2: Agrobacterium-mediated transformation protocol for B. distachyon genotype Bd21.
Figure 3: Selection and screening of transgenic calli and plantlets using either combined chemical selection and visual screening or chemical selection alone.

Similar content being viewed by others

References

  1. Vain, P. Global trends in plant transgenic science and technology (1973–2003). Trends Biotechnol. 24, 206–211 (2006).

    Article  CAS  Google Scholar 

  2. Napoli, C., Lemieux, C. & Jorgensen, R. Introduction of a chimeric chalcone synthase gene into petunia results in reversible co-suppression of homologous genes in trans . Plant Cell 2, 279–289 (1990).

    Article  CAS  Google Scholar 

  3. Hamilton, A.J. & Baulcombe, D.C. A species of small antisense RNA in posttranscriptional gene silencing in plants. Science 286, 950–952 (1999).

    Article  CAS  Google Scholar 

  4. Vain, P. Thirty years of plant transformation technology development. Plant Biotechnol. J. 5, 221–229 (2007).

    Article  CAS  Google Scholar 

  5. Vain, P. & Thole, V. Gene insertion patterns and sites. In Methods in Molecular Biology Transgenic Wheat, Barley and Oats: Production and Characterization Protocols (eds. Shewry P. & Jones H.D.) pp 203–226 (Humana Press, Totowa, New Jersey, U.S.A., 2008).

    Google Scholar 

  6. Hiei, Y., Ohta, S., Komari, T. & Kumashiro, T. Efficient transformation of rice (Oryza sativa L) mediated by Agrobacterium and sequence analysis of the boundaries of the T- DNA. Plant J. 6, 271–282 (1994).

    Article  CAS  Google Scholar 

  7. Ishida, Y. et al. High efficiency transformation of maize (Zea mays L) mediated by Agrobacterium tumefaciens . Nat. Biotechnol. 14, 745–750 (1996).

    Article  CAS  Google Scholar 

  8. Cheng, M. et al. Genetic transformation of wheat mediated by Agrobacterium tumefaciens . Plant Physiol. 115, 971–980 (1997).

    Article  CAS  Google Scholar 

  9. Tingay, S. et al. Agrobacterium tumefaciens-mediated barley transformation. Plant J. 11, 1369–1376 (1997).

    Article  CAS  Google Scholar 

  10. Zhao, Z.Y. et al. Agrobacterium-mediated sorghum transformation. Plant Mol. Biol. 44, 789–798 (2000).

    Article  CAS  Google Scholar 

  11. James, C. Global status of commercialized biotech/GM crops: 2007. ISAAA Briefs 37 xvii, 143 (2007).

  12. Draper, J. et al. Brachypodium distachyon. A new model system for functional genomics in grasses. Plant Physiol. 127, 1539–1555 (2001).

    Article  CAS  Google Scholar 

  13. Garvin, D.F. et al. Development of genetic and genomic research resources for Brachypodium distachyon, a new model system for grass crop research. Crop Sci. 48, S69–S84 (2008).

    Article  Google Scholar 

  14. Opanowicz, M., Vain, P., Draper, J., Parker, D. & Doonan, J.H. Brachypodium distachyon: making hay with a wild grass. Trends Plant Sci. 13, 172–177 (2008).

    Article  CAS  Google Scholar 

  15. Griffiths, S. et al. Molecular characterization of Ph1 as a major chromosome pairing locus in polyploid wheat. Nature 439, 749–752 (2006).

    Article  CAS  Google Scholar 

  16. Christiansen, P., Andersen, C.H., Didion, T., Folling, M. & Nielsen, K.K. A rapid and efficient transformation protocol for the grass Brachypodium distachyon . Plant Cell Rep. 23, 751–758 (2005).

    Article  CAS  Google Scholar 

  17. Vogel, J.P., Garvin, D.F., Leong, O.M. & Hayden, D.M. Agrobacterium-mediated transformation and inbred line development in the model grass Brachypodium distachyon . Plant Cell Tissue Organ Cult. 84, 199–211 (2006).

    Article  Google Scholar 

  18. Vogel, J. & Hill, T. High-efficiency Agrobacterium-mediated transformation of Brachypodium distachyon inbred line Bd21-3. Plant Cell Rep. 27, 471–478 (2008).

    Article  CAS  Google Scholar 

  19. Vain, P. et al. Agrobacterium-mediated transformation of the temperate grass Brachypodium distachyon (genotype Bd21) for T-DNA insertional mutagenesis. Plant Biotechnol. J. 6, 236–245 (2008).

    Article  CAS  Google Scholar 

  20. Pãcurar, D.I., Thordal-Christensen, H., Nielsen, K.K. & Lenk, I. A high-throughput Agrobacterium-mediated transformation system for the grass model species Brachypodium distachyon L. Transgenic Res. 17, 955–963 (2008).

    Article  Google Scholar 

  21. Bablak, P., Draper, J., Davey, M.R. & Lynch, P.T. Plant regeneration and micropropagation of Brachypodium distachyon . Plant Cell Tissue Organ Cult. 42, 97–107 (1995).

    Article  Google Scholar 

  22. Vain, P., Worland, B., Kohli, A., Snape, J.W. & Christou, P. The green fluorescent protein (GFP) as a vital screenable marker in rice transformation. Theor. Appl. Genet. 96, 164–169 (1998).

    Article  CAS  Google Scholar 

  23. Murray, F., Brettell, R., Matthews, P., Bishop, D. & Jacobsen, J. Comparison of Agrobacterium-mediated transformation of four barley cultivars using the GFP and GUS reporter genes. Plant Cell Rep. 22, 397–402 (2004).

    Article  CAS  Google Scholar 

  24. Shrawat, A.K. & Lorz, H. Agrobacterium-mediated transformation of cereals: a promising approach crossing barriers. Plant Biotechnol. J. 4, 575–603 (2006).

    Article  CAS  Google Scholar 

  25. Murashige, T. & Skoog, F. A revised medium for rapid growth and bio-assays with tobacco tissue cultures. Physiol. Plant. 15, 473 (1962).

    Article  CAS  Google Scholar 

  26. Gamborg, O.L., Miller, R.A. & Ojima, K. Nutrient requirements of suspension cultures of soybean root cells. Exp. Cell Res. 50, 151 (1968).

    Article  CAS  Google Scholar 

  27. Garfinkel, D.J. & Nester, E.W. Agrobacterium-tumefaciens mutants affected in crown gall tumorigenesis and octopine catabolism. J. Bacteriol. 144, 732–743 (1980).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the UK Biotechnology and Biological Sciences Research Council (BBSRC) and through a Short-Term Marie Curie EST fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philippe Vain.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alves, S., Worland, B., Thole, V. et al. A protocol for Agrobacterium-mediated transformation of Brachypodium distachyon community standard line Bd21. Nat Protoc 4, 638–649 (2009). https://doi.org/10.1038/nprot.2009.30

Download citation

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nprot.2009.30

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing