Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Myocardial infarction and intramyocardial injection models in swine

Abstract

Sustainable and reproducible large animal models that closely replicate the clinical sequelae of myocardial infarction (MI) are important for the translation of basic science research into bedside medicine. Swine are well accepted by the scientific community for cardiovascular research, and they represent an established animal model for preclinical trials for US Food and Drug Administration (FDA) approval of novel therapies. Here we present a protocol for using porcine models of MI created with a closed-chest coronary artery occlusion-reperfusion technique. This creates a model of MI encompassing the anteroapical, lateral and septal walls of the left ventricle. This model infarction can be easily adapted to suit individual study design and enables the investigation of a variety of possible interventions. This model is therefore a useful tool for translational research into the pathophysiology of ventricular remodeling and is an ideal testing platform for novel biological approaches targeting regenerative medicine. This model can be created in approximately 8–10 h.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Flowchart depicting representative experimental timelines for acute chronic ICM.
Figure 2: Surgery, anesthesia and angiography equipment required for models of ischemic heart disease.
Figure 3: Cardiac MRI imaging techniques showing the extent of MI.
Figure 4: Neck vasculature and musculature of the swine.
Figure 5: Surgical dissection of the vasculature of the neck in the swine.
Figure 6: Vasculature access via a modified Seldinger technique.
Figure 7: Pressure-volume data obtained using a micromanometer conductance catheter.
Figure 8: Cardiac fluoroscopic and angiographic imaging depicting placement of diagnostic catheters and induction of MI.
Figure 9: Representative electrocardiographic changes during MI.
Figure 10: Surgical- and catheter-based injections of stem cells.
Figure 11: Representative pressure-volume loops before and after MI model creation.
Figure 12: Ventricular remodeling in the chronic MI model.

Similar content being viewed by others

References

  1. Heidenreich, P.A. et al. Forecasting the future of cardiovascular disease in the United States. Circulation 123, 933–944 (2011).

    PubMed  Google Scholar 

  2. Roger, V.L. et al. Heart Disease and Stroke Statistics—2011 Update. Circulation 123, e18–e209 (2011).

    PubMed  Google Scholar 

  3. Swindle, M. Swine in the Laboratory: Surgery, Anesthesia, Imaging, and Experimental Techniques (Taylor & Francis Group, 2007).

  4. Dondelinger, R.F. et al. Relevant radiological anatomy of the pig as a training model in interventional radiology. Eur. Radiol. 8, 1254–1273 (1998).

    PubMed  CAS  Google Scholar 

  5. Amado, L.C. et al. Cardiac repair with intramyocardial injection of allogeneic mesenchymal stem cells after myocardial infarction. Proc. Natl. Acad. Sci. USA 102, 11474–11479 (2005).

    PubMed  PubMed Central  CAS  Google Scholar 

  6. Hatzistergos, K.E. et al. Bone marrow mesenchymal stem cells stimulate cardiac stem cell proliferation and differentiation/novelty and significance. Circ. Res. 107, 913–922 (2010).

    PubMed  PubMed Central  CAS  Google Scholar 

  7. Ishikawa, K. et al. Development of a preclinical model of ischemic cardiomyopathy in swine. Am. J. Physiol. Heart Circ. Physiol. 301, H530–H537 (2011).

    PubMed  PubMed Central  CAS  Google Scholar 

  8. Mewton, N. et al. Determination of the myocardial area at risk with pre- versus post-reperfusion imaging techniques in the pig model. Basic Res. Cardiol. 106, 1247–1257 (2011).

    PubMed  Google Scholar 

  9. Schuleri, K.H. et al. The adult Göttingen minipig as a model for chronic heart failure after myocardial infarction: focus on cardiovascular imaging and regenerative therapies. Comp. Med. 58, 568–579 (2008).

    PubMed  PubMed Central  CAS  Google Scholar 

  10. Verdouw, P.D., van den Doel, M.A., de, Z.S. & Duncker, D.J. Animal models in the study of myocardial ischaemia and ischaemic syndromes. Cardiovasc. Res. 39, 121–135 (1998).

    PubMed  CAS  Google Scholar 

  11. Zhang, J. et al. Functional and bioenergetic consequences of postinfarction left ventricular remodeling in a new porcine model: MRI and 31P-MRS Study. Circulation 94, 1089–1100 (1996).

    PubMed  CAS  Google Scholar 

  12. Pacher, P., Nagayama, T., Mukhopadhyay, P., Batkai, S. & Kass, D.A. Measurement of cardiac function using pressure-volume conductance catheter technique in mice and rats. Nat. Protoc. 3, 1422–1434 (2008).

    PubMed  PubMed Central  CAS  Google Scholar 

  13. Kohn, F., Sharifi, A.R. & Simianer, H. Modeling the growth of the Goettingen minipig. J. Animal Sci. 85, 84–92 (2007).

    CAS  Google Scholar 

  14. Suzuki, Y., Lyons, J.K., Yeung, A.C. & Ikeno, F. In vivo porcine model of reperfused myocardial infarction: in situ double staining to measure precise infarct area/area at risk. Cathet. Cardiovasc. Intervent. 71, 100–107 (2008).

    Google Scholar 

  15. Pfeffer, M.A. & Braunwald, E. Ventricular remodeling after myocardial infarction. Experimental observations and clinical implications. Circulation 81, 1161–1172 (1990).

    PubMed  CAS  Google Scholar 

  16. Williams, A.R. & Hare, J.M. Mesenchymal stem cells; biology, pathophysiology, translational findings, and therapeutic implications for cardiac disease. Circ. Res. 109, 923–940 (2011).

    PubMed  PubMed Central  CAS  Google Scholar 

  17. Hou, D. et al. Radiolabeled cell distribution after intramyocardial, intracoronary, and interstitial retrograde coronary venous delivery. Circulation 112, 150–156 (2005).

    Google Scholar 

  18. Perin, E.C. et al. Comparison of intracoronary and transendocardial delivery of allogeneic mesenchymal cells in a canine model of acute myocardial infarction. J. Mol. Cellular Cardiol. 44, 486–495 (2008).

    CAS  Google Scholar 

  19. Freyman, T. et al. A quantitative, randomized study evaluating three methods of mesenchymal stem cell delivery following myocardial infarction. Eur. Heart J. 27, 1114–1122 (2006).

    PubMed  Google Scholar 

  20. Wang, X. et al. Stem cells for myocardial repair with use of a transarterial catheter. Circulation 120, S238–S246 (2009).

    PubMed  PubMed Central  Google Scholar 

  21. Trachtenberg, B. et al. Rationale and design of the Transendocardial Injection of Autologous Human Cells (bone marrow or mesenchymal) in Chronic Ischemic Left Ventricular Dysfunction and Heart Failure Secondary to Myocardial Infarction (TAC-HFT) trial: a randomized, double-blind, placebo-controlled study of safety and efficacy. Am. Heart J. 161, 487–493 (2011).

    PubMed  CAS  Google Scholar 

  22. Quevedo, H.C. et al. Allogeneic mesenchymal stem cells restore cardiac function in chronic ischemic cardiomyopathy via trilineage differentiating capacity. Proc. Natl. Acad. Sci. USA 106, 14022–14027 (2009).

    PubMed  PubMed Central  CAS  Google Scholar 

  23. Bolli, R. et al. Cardiac stem cells in patients with ischaemic cardiomyopathy (SCIPIO): initial results of a randomised phase 1 trial. Lancet 378, 1847–1857 (2011).

    PubMed  PubMed Central  Google Scholar 

  24. Williams, A.R. et al. Intramyocardial stem cell injection in patients with ischemic cardiomyopathy/novelty and significance. Circ. Res. 108, 792–796 (2011).

    PubMed  PubMed Central  CAS  Google Scholar 

  25. Huang, N.F. et al. A rodent model of myocardial infarction for testing the efficacy of cells and polymers for myocardial reconstruction. Nat. Protoc. 1, 1596–1609 (2006).

    PubMed  CAS  Google Scholar 

  26. Kornowski, R. et al. Electromagnetic guidance for catheter-based transendocardial injection: a platform for intramyocardial angiogenesis therapy: results in normal and ischemic porcine models. J. Am. Coll. Cardiol. 35, 1031–1039 (2000).

    PubMed  CAS  Google Scholar 

  27. van Laake, L.W. et al. Monitoring of cell therapy and assessment of cardiac function using magnetic resonance imaging in a mouse model of myocardial infarction. Nat. Protoc. 2, 2551–2567 (2007).

    PubMed  CAS  Google Scholar 

  28. Suncion, V.Y., Schulman, I.H. & Hare, J.M. Concise review: the role of clinical trials in deciphering mechanisms of action of cardiac cell-based therapy. Stem Cells Trans. Med. 1, 29–35 (2012).

    CAS  Google Scholar 

  29. Vilahur, G. et al. Molecular and cellular mechanisms involved in cardiac remodeling after acute myocardial infarction. J. Mol. Cell. Cardiol. 50, 522–533 (2011).

    PubMed  CAS  Google Scholar 

  30. de la Fuente, L.M. et al. Transendocardial autologous bone marrow in chronic myocardial infarction using a helical needle catheter: 1-year follow-up in an open-label, nonrandomized, single-center pilot study (the TABMMI study). Am. Heart J. 154, 79 (2007).

    PubMed  Google Scholar 

  31. Tomkowiak, M.T. et al. Targeted transendocardial therapeutic delivery guided by MRI-X-ray image fusion. Catheter. Cardiovasc. Interv. 78, 468–478 (2011).

    PubMed  Google Scholar 

  32. Baklanov, D.V. et al. Live 3D echo guidance of catheter-based endomyocardial injection. Catheter. Cardiovasc. Interv. 65, 340–345 (2005).

    PubMed  Google Scholar 

  33. Fuchs, S. et al. Transendocardial delivery of autologous bone marrow enhances collateral perfusion and regional function in pigs with chronic experimental myocardial ischemia. J. Am. Coll. Cardiol. 37, 1726–1732 (2001).

    PubMed  CAS  Google Scholar 

  34. Perin, E.C. et al. Transendocardial, autologous bone marrow cell transplantation for severe, chronic ischemic heart failure. Circulation 107, 2294–2302 (2003).

    PubMed  Google Scholar 

  35. Dib, N. et al. Endoventricular transplantation of allogenic skeletal myoblasts in a porcine model of myocardial infarction. J. Endovasc. Ther. 9, 313–319 (2002).

    PubMed  Google Scholar 

  36. Losordo, D.W. et al. Intramyocardial transplantation of autologous CD34+ stem cells for intractable angina. Circulation 115, 3165–3172 (2007).

    PubMed  Google Scholar 

  37. van Ramshorst, J. et al. Intramyocardial bone marrow cell injection for chronic myocardial ischemia. JAMA. 301, 1997–2004 (2009).

    PubMed  CAS  Google Scholar 

  38. Krause, K. et al. Percutaneous intramyocardial stem cell injection in patients with acute myocardial infarction: first-in-man study. Heart 95, 1145–1152 (2009).

    PubMed  CAS  Google Scholar 

  39. Smits, P.C. et al. Catheter-based intramyocardial injection of autologous skeletal myoblasts as a primary treatment of ischemic heart failure: clinical experience with six-month follow-up. J. Am. Coll. Cardiol. 42, 2063–2069 (2003).

    PubMed  Google Scholar 

  40. Dib, N. et al. Safety and feasibility of autologous myoblast transplantation in patients With ischemic cardiomyopathy. Circulation 112, 1748–1755 (2005).

    PubMed  Google Scholar 

  41. Ding, P. et al. Horner syndrome after carotid sheath surgery in a pig: anatomic study of cervical sympathetic chain. Comp. Med. 61, 453–456 (2011).

    PubMed  PubMed Central  CAS  Google Scholar 

  42. Scanlon, P.J. et al. ACC/AHA guidelines for coronary angiography: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Committee on Coronary Angiography) developed in collaboration with the Society for Cardiac Angiography and Interventions. J. Am. Coll. Cardiol. 33, 1756–1824 (1999).

    PubMed  CAS  Google Scholar 

  43. Alderman, E.L. & Stadius, M. The angiographic definitions of the bypass angioplasty revascularization investigation. Coron. Artery Dis. 3, 1189–1207 (1992).

    Google Scholar 

Download references

Acknowledgements

This research is supported by US National Institutes of Health grants R01 HL094849, P20 HL101443, R01 HL084275, R01 HL107110, R01 HL110737 and U54 HL081028 (J.M.H.); and by the University of Miami Miller School of Medicine, Interdisciplinary Stem Cell Institute. The researchers would like to thank R. Gonzalez, D. Valdes, J. Rodriguez and M. Rosado for their technical contributions, and C. Sanina for her artistic contributions.

Author information

Authors and Affiliations

Authors

Contributions

F.C.M. was involved in manuscript conception and design, creation/collection/assembly of data and manuscript writing; K.S.T. contributed to collection/assembly of data and manuscript writing; V.K. and V.Y.S. contributed equally to manuscript writing and editing, and to the creation and collection of data; A.W.H. and A.R.W. contributed to surgical and experimental conception and design, and to manuscript editing; M.M. was involved in manuscript writing; J.M.H., team leader, provided project and manuscript conception and design, financial support, manuscript writing and final approval of the manuscript.

Corresponding author

Correspondence to Joshua M Hare.

Ethics declarations

Competing interests

Dr. Hare has a research grant from BioCardia and is listed as an inventor on a patent for cell therapy filed by the University of Miami. No other authors indicate competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

McCall, F., Telukuntla, K., Karantalis, V. et al. Myocardial infarction and intramyocardial injection models in swine. Nat Protoc 7, 1479–1496 (2012). https://doi.org/10.1038/nprot.2012.075

Download citation

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nprot.2012.075

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing