Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Obtaining genomes from uncultivated environmental microorganisms using FACS–based single-cell genomics

Abstract

Single-cell genomics is a powerful tool for exploring the genetic makeup of environmental microorganisms, the vast majority of which are difficult, if not impossible, to cultivate with current approaches. Here we present a comprehensive protocol for obtaining genomes from uncultivated environmental microbes via high-throughput single-cell isolation by FACS. The protocol encompasses the preservation and pretreatment of differing environmental samples, followed by the physical separation, lysis, whole-genome amplification and 16S rRNA–based identification of individual bacterial and archaeal cells. The described procedure can be performed with standard molecular biology equipment and a FACS machine. It takes <12 h of bench time over a 4-d time period, and it generates up to 1 μg of genomic DNA from an individual microbial cell, which is suitable for downstream applications such as PCR amplification and shotgun sequencing. The completeness of the recovered genomes varies, with an average of 50%.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Single-cell whole-genome amplification workflow.
Figure 2: High-throughput single-cell sorting.
Figure 3: Real-time whole-genome amplification and 16S rRNA gene PCR.

Similar content being viewed by others

References

  1. Rinke, C. et al. Insights into the phylogeny and coding potential of microbial dark matter. Nature 499, 431–437 (2013).

    Article  CAS  PubMed  Google Scholar 

  2. Amann, R.I., Ludwig, W. & Schleifer, K.H. Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol. Rev. 59, 143–169 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Albertsen, M. et al. Genome sequences of rare, uncultured bacteria obtained by differential coverage binning of multiple metagenomes. Nat. Biotechnol. 31, 533–538 (2013).

    Article  CAS  PubMed  Google Scholar 

  4. Wrighton, K.C. et al. Fermentation, hydrogen, and sulfur metabolism in multiple uncultivated bacterial phyla. Science 337, 1661–1665 (2012).

    Article  CAS  PubMed  Google Scholar 

  5. Blainey, P.C. The future is now: single-cell genomics of bacteria and archaea. FEMS Microbiol. Rev. 37, 407–427 (2013).

    Article  CAS  PubMed  Google Scholar 

  6. Stepanauskas, R. Single cell genomics: an individual look at microbes. Curr. Opin. Microbiol. 15, 613–620 (2012).

    Article  CAS  PubMed  Google Scholar 

  7. Hess, M. et al. Metagenomic discovery of biomass-degrading genes and genomes from cow rumen. Science 331, 463–467 (2011).

    Article  CAS  PubMed  Google Scholar 

  8. Blainey, P.C., Mosier, A.C., Potanina, A., Francis, C.A. & Quake, S.R. Genome of a low-salinity ammonia-oxidizing archaeon determined by single-cell and metagenomic analysis. PLoS ONE 6, e16626 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Campbell, J.H. et al. UGA is an additional glycine codon in uncultured SR1 bacteria from the human microbiota. Proc. Natl. Acad. Sci. USA 110, 5540–5545 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Dodsworth, J.A. et al. Single-cell and metagenomic analyses indicate a fermentative and saccharolytic lifestyle for members of the OP9 lineage. Nat. Commun. 4, 1854 (2013).

    Article  PubMed  Google Scholar 

  11. Swan, B.K. et al. Prevalent genome streamlining and latitudinal divergence of planktonic bacteria in the surface ocean. Proc. Natl. Acad. Sci. USA 110, 11463–11468 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Woyke, T. et al. Assembling the marine metagenome, one cell at a time. PLoS ONE 4, e5299 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Yoon, H.S. et al. Single-cell genomics reveals organismal interactions in uncultivated marine protists. Science 332, 714–717 (2011).

    Article  CAS  PubMed  Google Scholar 

  14. McConnell, M.J. et al. Mosaic copy number variation in human neurons. Science 342, 632–637 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Zhang, K. et al. Sequencing genomes from single cells by polymerase cloning. Nat. Biotechnol. 24, 680–686 (2006).

    Article  CAS  PubMed  Google Scholar 

  16. Woyke, T. et al. One bacterial cell, one complete genome. PLoS ONE 5, e10314 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Landry, Z.C., Giovanonni, S.J., Quake, S.R. & Blainey, P.C. Optofluidic cell selection from complex microbial communities for single-genome analysis. Methods Enzymol. 531, 61–90 (2013).

    Article  CAS  PubMed  Google Scholar 

  18. Frumkin, D. et al. Amplification of multiple genomic loci from single cells isolated by laser micro-dissection of tissues. BMC Biotechnol. 8, 17 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Thompson, A., Bench, S., Carter, B. & Zehr, J. Coupling FACS and genomic methods for the characterization of uncultivated symbionts. Methods Enzymol. 531, 45–60 (2013).

    Article  CAS  PubMed  Google Scholar 

  20. Swan, B.K. et al. Potential for chemolithoautotrophy among ubiquitous bacteria lineages in the dark ocean. Science 333, 1296–1300 (2011).

    Article  CAS  PubMed  Google Scholar 

  21. Raghunathan, A. et al. Genomic DNA amplification from a single bacterium. Appl. Environ. Microbiol. 71, 3342–3347 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Dean, F.B. et al. Comprehensive human genome amplification using multiple displacement amplification. Proc. Natl. Acad. Sci. USA 99, 5261–5266 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Woyke, T. et al. Decontamination of MDA reagents for single cell whole genome amplification. PLoS ONE 6, e26161 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Rodrigue, S. et al. Whole genome amplification and de novo assembly of single bacterial cells. PLoS ONE 4, e6864 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Lasken, R.S. & Stockwell, T.B. Mechanism of chimera formation during the multiple displacement amplification reaction. BMC Biotechnol. 7, 19 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Stepanauskas, R. & Sieracki, M.E. Matching phylogeny and metabolism in the uncultured marine bacteria, one cell at a time. Proc. Natl. Acad. Sci. USA 104, 9052–9057 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Blainey, P.C. & Quake, S.R. Digital MDA for enumeration of total nucleic acid contamination. Nucleic Acids Res. 39, e19 (2011).

    Article  PubMed  Google Scholar 

  28. Miyauchi, R., Oki, K., Aoi, Y. & Tsuneda, S. Diversity of nitrite reductase genes in 'Candidatus Accumulibacter phosphatis'-dominated cultures enriched by flow-cytometric sorting. Appl. Environ. Microbiol. 73, 5331–5337 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Stackebrandt, E. & Ebers, J. Taxonomic parameters revisited: tarnished gold standard. Microbiology Today 33, 152–155 (2006).

    Google Scholar 

  30. Yarza, P. et al. Update of the All-Species Living Tree Project based on 16S and 23S rRNA sequence analyses. Syst. Appl. Microbiol. 33, 291–299 (2010).

    Article  CAS  PubMed  Google Scholar 

  31. McDonald, D. et al. An improved Greengenes taxonomy with explicit ranks for ecological and evolutionary analyses of bacteria and archaea. ISME J. 6, 610–618 (2012).

    Article  CAS  PubMed  Google Scholar 

  32. Chang, H.W. et al. Development of microbial genome-probing microarrays using digital multiple displacement amplification of uncultivated microbial single cells. Environ. Sci. Technol. 42, 6058–6064 (2008).

    Article  CAS  PubMed  Google Scholar 

  33. Frank, J.A. et al. Critical evaluation of two primers commonly used for amplification of bacterial 16S rRNA genes. Appl. Environ. Microbiol. 74, 2461–2470 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Mao, D.P., Zhou, Q., Chen, C.Y. & Quan, Z.X. Coverage evaluation of universal bacterial primers using the metagenomic datasets. BMC Microbiol. 12, 66 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Lane, D.J. in Nucleic Acid Techniques in Bacterial Systematics (eds. Stackebrandt, E. & Goodfellow, M.) 115–175 (John Wiley and Sons, 1991).

  36. Caporaso, J.G. et al. Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proc. Natl. Acad. Sci. USA 108 (suppl. 1), 4516–4522 (2011).

    Article  CAS  PubMed  Google Scholar 

  37. An, D. et al. Metagenomics of hydrocarbon resource environments indicates aerobic taxa and genes to be unexpectedly common. Environ. Sci. Technol. 47, 10708–10717 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Cole, J.K. et al. Sediment microbial communities in Great Boiling Spring are controlled by temperature and distinct from water communities. ISME J. 7, 718–729 (2013).

    Article  CAS  PubMed  Google Scholar 

  39. Lane, D.J. et al. Rapid determination of 16S ribosomal RNA sequences for phylogenetic analyses. Proc. Natl. Acad. Sci. USA 82, 6955–6959 (1985).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Pace, N.R.S., Stahl, D.A., Lane, D.J. & Olsen, C.J. The use of rRNA sequences to characterize natural microbial populations. Adv. Microb. Ecol. 9, 1–55 (1986).

    Article  CAS  Google Scholar 

  41. Page, K.A., Connon, S.A. & Giovannoni, S.J. Representative freshwater bacterioplankton isolated from Crater Lake, Oregon. Appl. Environ. Microbiol. 70, 6542–6550 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Casamayor, E.O., Schafer, H., Baneras, L., Pedros-Alio, C. & Muyzer, G. Identification of and spatio-temporal differences between microbial assemblages from two neighboring sulfurous lakes: comparison by microscopy and denaturing gradient gel electrophoresis. Appl. Environ. Microbiol. 66, 499–508 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Raskin, L., Stromley, J.M., Rittmann, B.E. & Stahl, D.A. Group-specific 16S rRNA hybridization probes to describe natural communities of methanogens. Appl. Environ. Microbiol. 60, 1232–1240 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Stahl, D.A.A. & Amann, R. in Nucleic Acid Techniques in Bacterial Systematics (eds. Stackebrandt, E. & Goodfellow, M.) 205–248 (John Wiley and Sons, 1991).

  45. Zhu, F., Massana, R., Not, F., Marie, D. & Vaulot, D. Mapping of picoeucaryotes in marine ecosystems with quantitative PCR of the 18S rRNA gene. FEMS Microbiol. Ecol. 52, 79–92 (2005).

    Article  CAS  PubMed  Google Scholar 

  46. Medlin, L., Elwood, H.J., Stickel, S. & Sogin, M.L. The characterization of enzymatically amplified eukaryotic 16S-like rRNA-coding regions. Gene 71, 491–499 (1988).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The work conducted by the US DOE Joint Genome Institute is supported by the Office of Science of the US Department of Energy under contract no. DE-AC02-05CH11231. Work conducted by Bigelow Laboratory for Ocean Sciences is supported by National Science Foundation grants OCE-1232982, OCE-821374, EF-0633142, EF-826924 and MCB-738232.

Author information

Authors and Affiliations

Authors

Contributions

C.R., T.W., R.M. and R.S. conceived the strategies. C.R., J.L., N.N., D.G., B.T., N.P. and E.D. performed the experiments and analyzed the data. C.R. wrote the paper with significant input from T.W., R.M. and R.S.

Corresponding author

Correspondence to Tanja Woyke.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rinke, C., Lee, J., Nath, N. et al. Obtaining genomes from uncultivated environmental microorganisms using FACS–based single-cell genomics. Nat Protoc 9, 1038–1048 (2014). https://doi.org/10.1038/nprot.2014.067

Download citation

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nprot.2014.067

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research