Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

In-cell 13C NMR spectroscopy for the study of intrinsically disordered proteins

Abstract

A large number of proteins carry out their function in highly flexible and disordered states, lacking a well-defined 3D structure. These proteins, referred to as intrinsically disordered proteins (IDPs), are now in the spotlight of modern structural biology. Nuclear magnetic resonance (NMR) spectroscopy represents a unique tool for accessing atomic resolution information on IDPs in complex environments as whole cells, provided that the methods are optimized to their peculiar properties and to the characteristics of in-cell experiments. We describe procedures for the preparation of in-cell NMR samples, as well as for the setup of NMR experiments and their application to in-cell studies, using human α-synuclein overexpressed in Escherichia coli as an example. The expressed protein is labeled with 13C and 15N stable isotopes to enable the direct recording of 13C-detected NMR experiments optimized for the properties of IDPs. The entire procedure covers 24 h, including cell transformation, cell growth overnight, setup of the spectrometer and NMR experiment recording.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Analysis of IDPs at atomic resolution.
Figure 2: Schematic representation of the 2D spectra that can be useful to study in-cell IDPs.
Figure 3: Correlation spectra of α-synuclein overexpressed in E. coli cells and on cell lysates.
Figure 4: The 2D CON spectra acquired on α-synuclein overexpressed in E. coli cells using two different variants of the experiment.
Figure 5: Selected regions of the 2D 1H-15N (2D HN SOFAST) and 2D 13C-15N (2D HN-BESTCON and 2D Hα-flipCON) correlation spectra.
Figure 6: 2D 13C′-13Cα correlation spectra (2D CACO).

Similar content being viewed by others

References

  1. Bertini I., McGreevy, K.S. & Parigi, G. (Eds.) NMR of Biomolecules: Towards Mechanistic Systems Biology. (Wiley-VCH, 2012).

  2. Dyson, H.J. & Wright, P.E. Intrinsically unstructured proteins and their functions. Nat. Rev. Mol. Cell Biol. 6, 197–208 (2005).

    Article  CAS  Google Scholar 

  3. Serber, Z. et al. High-resolution macromolecular NMR spectroscopy inside living cells. J. Am. Chem. Soc. 123, 2446–2447 (2001).

    Article  CAS  Google Scholar 

  4. Selenko, P. & Wagner, G. Looking into live cells with in-cell NMR spectroscopy. J. Struct. Biol. 158, 244–253 (2007).

    Article  CAS  Google Scholar 

  5. Selenko, P. et al. In situ observation of protein phosphorylation by high-resolution NMR spectroscopy. Nat. Struct. Mol. Biol. 15, 321–329 (2008).

    Article  CAS  Google Scholar 

  6. Banci, L. et al. Atomic-resolution monitoring of protein maturation in live human cells by NMR. Nat. Chem. Biol. 9, 297–299 (2013).

    Article  CAS  Google Scholar 

  7. Felli, I.C. & Pierattelli, R. Novel methods based on 13C detection to study intrinsically disordered proteins. J. Magn. Reson. 241, 115–125 (2014).

    Article  CAS  Google Scholar 

  8. Dyson, H.J. & Wright, P.E. Nuclear magnetic resonance methods for the elucidation of structure and dynamics in disordered states. Methods Enzymol. 339, 258–271 (2001).

    Article  CAS  Google Scholar 

  9. Mittag, T. & Forman-Kay, J. Atomic-level characterization of disordered protein ensembles. Curr. Opin. Struct. Biol. 17, 3–14 (2007).

    Article  CAS  Google Scholar 

  10. Kjaergaard, M. & Poulsen, F.M. Disordered proteins studied by chemical shifts. Prog. NMR Spectrosc. 60, 42–51 (2012).

    Article  CAS  Google Scholar 

  11. Hsu, S.T., Bertoncini, C.W. & Dobson, C.M. Use of protonless NMR spectroscopy to alleviate the loss of information resulting from exchange-broadening. J. Am. Chem. Soc. 131, 7222–7223 (2009).

    Article  CAS  Google Scholar 

  12. Skora, L., Becker, S. & Zweckstetter, M. Molten globule precursor states are conformationally correlated to amyloid fibrils of human β-2-microglobulin. J. Am. Chem. Soc. 132, 9223–9225 (2010).

    Article  CAS  Google Scholar 

  13. Gil, S. et al. NMR studies of intrinsically disordered proteins near physiological conditions. Angew. Chem. Int. Ed. 52, 11808–11812 (2013).

    Article  CAS  Google Scholar 

  14. Bermel, W., Bertini, I., Felli, I.C., Piccioli, M. & Pierattelli, R. 13C-detected protonless NMR spectroscopy of proteins in solution. Progr. NMR Spectrosc. 48, 25–45 (2006).

    Article  CAS  Google Scholar 

  15. Felli, I.C., Piai, A. & Pierattelli, R. Recent advances in solution NMR studies: 13C direct detection for biomolecular NMR applications. In Ann. Rep. NMR Spectroscop. 359–418 (Elsevier, 2013).

    Google Scholar 

  16. Felli, I.C. & Pierattelli, R. Recent progress in NMR spectroscopy: towards the study of intrinsically disordered proteins of increasing size and complexity. IUBMB Life 64, 473–481 (2012).

    Article  CAS  Google Scholar 

  17. Inomata, K. et al. High-resolution multi-dimensional NMR spectroscopy of proteins in human cells. Nature 458, 106–109 (2009).

    Article  CAS  Google Scholar 

  18. Sakakibara, D. et al. Protein structure determination in living cells by in-cell NMR spectroscopy. Nature 458, 102–105 (2009).

    Article  CAS  Google Scholar 

  19. Ikeya, T. et al. NMR protein structure determination in living E.coli cells using nonlinear sampling. Nat. Protoc. 5, 1051–1060 (2010).

    Article  CAS  Google Scholar 

  20. Reckel, S., Hänsel, R., Löhr, F. & Dötsch, V. In-cell NMR spectroscopy. Prog. NMR Spectrosc. 51, 91–101 (2007).

    Article  CAS  Google Scholar 

  21. Ogino, S. et al. Observation of NMR signals from proteins introduced into living mammalian cells by reversible membrane permeabilization using a pore-forming toxin, streptolysin O. J. Am. Chem. Soc. 131, 10834–10835 (2009).

    Article  CAS  Google Scholar 

  22. Pielak, G.J. et al. Protein nuclear magnetic resonance under physiological conditions. Biochemistry 48, 226–234 (2009).

    Article  CAS  Google Scholar 

  23. Theillet, F.X. et al. Cell signaling, post-translational protein modifications and NMR spectroscopy. J. Biomol. NMR 54, 217–236 (2012).

    Article  CAS  Google Scholar 

  24. Bertrand, K., Reverdatto, S., Burz, D.S., Zitomer, R. & Shekhtman, A. Structure of proteins in eukaryotic compartments. J. Am. Chem. Soc. 134, 12798–12806 (2012).

    Article  CAS  Google Scholar 

  25. Ito, Y. & Selenko, P. Cellular structural biology. Curr. Opin. Struct. Biol. 20, 640–648 (2010).

    Article  CAS  Google Scholar 

  26. Maldonado, A.Y., Burz, D.S. & Shekhtman, A. In-cell NMR spectroscopy. Progr. NMR Spectrosc. 59, 197–212 (2011).

    Article  CAS  Google Scholar 

  27. Bertini, I., Felli, I.C., Gonnelli, L., Kumar, V.M.V. & Pierattelli, R. 13C direct-detection biomolecular NMR spectroscopy in living cells. Angew. Chem. Int. Ed. 50, 2339–2341 (2011).

    Article  CAS  Google Scholar 

  28. Serber, Z. et al. Methyl groups as probes for proteins and complexes in in-cell NMR experiments. J. Am. Chem. Soc. 126, 7119–7125 (2004).

    Article  CAS  Google Scholar 

  29. Bermel, W. et al. Improving the chemical shift dispersion of multidimensional NMR spectra of intrinsically disordered proteins. J. Biomol. NMR 55, 231–237 (2013).

    Article  CAS  Google Scholar 

  30. Bermel, W., Bertini, I., Felli, I.C., Kümmerle, R. & Pierattelli, R. Novel 13C direct detection experiments, including extension to the third dimension, to perform the complete assignment of proteins. J. Magn. Reson. 178, 56–64 (2006).

    Article  CAS  Google Scholar 

  31. Bermel, W. et al. Complete assignment of heteronuclear protein resonances by protonless NMR spectroscopy. Angew. Chem. Int. Ed. 44, 3089–3092 (2005).

    Article  CAS  Google Scholar 

  32. Bermel, W., Bertini, I., Felli, I.C. & Pierattelli, R. Speeding up 13C direct detection biomolecular NMR experiments. J. Am. Chem. Soc. 131, 15339–15345 (2009).

    Article  CAS  Google Scholar 

  33. Bermel, W. et al. H-start for exclusively heteronuclear NMR spectroscopy: the case of intrinsically disordered proteins. J. Magn. Reson. 198, 275–281 (2009).

    Article  CAS  Google Scholar 

  34. Bermel, W., Bertini, I., Felli, I.C., Peruzzini, R. & Pierattelli, R. Exclusively heteronuclear NMR experiments to obtain structural and dynamic information on proteins. ChemPhysChem 11, 689–695 (2010).

    Article  CAS  Google Scholar 

  35. Schanda, P. Fast-pulsing longitudinal relaxation optimized techniques: enriching the toolbox. Prog. NMR Spectrosc. 55, 238–265 (2009).

    Article  CAS  Google Scholar 

  36. Schanda, P., Van Melckebeke, H. & Brutscher, B. Speeding up three-dimensional protein NMR experiments to a few minutes. J. Am. Chem. Soc. 128, 9042–9043 (2006).

    Article  CAS  Google Scholar 

  37. Serber, Z. et al. Investigating macromolecules inside cultured and injected cells by in-cell NMR spectroscopy. Nat. Protoc. 1, 2701–2709 (2006).

    Article  CAS  Google Scholar 

  38. Sivashanmugam, A. et al. Practical protocols for production of very high yields of recombinant proteins using Escherichia coli. Protein Sci. 18, 936–948 (2009).

    Article  CAS  Google Scholar 

  39. Hwang, T.L. & Shaka, A.J. Water suppression that works. excitation sculpting using arbitrary wave-forms and pulsed-field gradients. J. Magn. Reson. A 112, 275–279 (1995).

    Article  CAS  Google Scholar 

  40. Schanda, P., Kupce, E. & Brutscher, B. SOFAST-HMQC experiments for recording two-dimensional heteronuclear correlation spectra of proteins within a few seconds. J. Biomol. NMR 33, 199–211 (2005).

    Article  CAS  Google Scholar 

  41. Kupce, E. & Freeman, R. Wide-band excitation with polychromatic pulses. J. Magn. Reson. A 108, 268–273 (1994).

    Article  CAS  Google Scholar 

  42. Geen, H. & Freeman, R. Band-selective radiofrequency pulses. J. Magn. Reson. 93, 93–141 (1991).

    Google Scholar 

  43. Andersson, P., Weigelt, J. & Otting, G. Spin-state selection filters for the measurement of heteronuclear one-bond coupling constants. J. Biomol. NMR 12, 435–441 (1998).

    Article  CAS  Google Scholar 

  44. Ottiger, M., Delaglio, F. & Bax, A. Measurement of J and dipolar couplings from simplified two-dimensional NMR spectra. J. Magn. Reson. 131, 373–378 (1998).

    Article  CAS  Google Scholar 

  45. Duma, L., Hediger, S., Brutscher, B., Böckmann, A. & Emsley, L. Resolution enhancement in multidimensional solid-state NMR spectroscopy of proteins using spin-state selection. J. Am. Chem. Soc. 125, 11816–11817 (2003).

    Article  CAS  Google Scholar 

  46. Bermel, W., Felli, I.C., Kümmerle, R. & Pierattelli, R. 13C direct-detection biomolecular NMR. Concepts Magn. Reson. 32A, 183–200 (2008).

    Article  CAS  Google Scholar 

  47. Emsley, L. & Bodenhausen, G. Gaussian pulse cascades: new analytical functions for rectangular selective inversion and in-phase excitation in NMR. Chem. Phys. Lett. 165, 469–476 (1990).

    Article  CAS  Google Scholar 

  48. Böhlen, J.-M. & Bodenhausen, G. Experimental aspects of chirp NMR spectroscopy. J. Magn. Reson. Ser. A 102, 293–301 (1993).

    Article  Google Scholar 

  49. Shaka, A.J., Keeler, J. & Freeman, R. Evaluation of a new broadband decoupling sequence: WALTZ-16. J. Magn. Reson. 53, 313–340 (1983).

    CAS  Google Scholar 

  50. Shaka, A.J., Barker, P.B. & Freeman, R. Computer-optimized decoupling scheme for wideband applications and low-level operation. J. Magn. Reson. 64, 547–552 (1985).

    CAS  Google Scholar 

  51. Dedmon, M.M., Patel, C.N., Young, G.B. & Pielak, G.J. FlgM gains structure in living cells. Proc. Natl. Acad. Sci. USA 99, 12681–12684 (2002).

    Article  CAS  Google Scholar 

  52. Li, C. et al. Differential dynamical effects of macromolecular crowding on an intrinsically disordered protein and a globular protein: implications for in-cell NMR spectroscopy. J. Am. Chem. Soc. 130, 6310–6311 (2008).

    Article  CAS  Google Scholar 

  53. Bermel, W. et al. Protonless NMR experiments for sequence-specific assignment of backbone nuclei in unfolded proteins. J. Am. Chem. Soc. 128, 3918–3919 (2006).

    Article  CAS  Google Scholar 

  54. Binolfi, A., Theillet, F.X. & Selenko, P. Bacterial in-cell NMR of human α-synuclein: a disordered monomer by nature? Biochem. Soc. Trans. 40, 950–954 (2012).

    Article  CAS  Google Scholar 

  55. Radivojac, P. et al. Intrinsic disorder and functional proteomics. Biophys. J. 92, 1439–1456 (2007).

    Article  CAS  Google Scholar 

  56. Banci, L., Barbieri, L., Bertini, I., Cantini, F. & Luchinat, E. In-cell NMR in E. coli to monitor maturation steps of hSOD1. PLoS ONE 6, e23561 (2011).

    Article  CAS  Google Scholar 

  57. Sakai, T. et al. In-cell NMR spectroscopy of proteins inside Xenopus laevis oocytes. J. Biomol. NMR 36, 179–188 (2006).

    Article  CAS  Google Scholar 

  58. Lippens, G., Landrieu, I. & Hanoulle, X. Studying post-translational modifications by in-cell NMR. Chem. Biol. 15, 311–312 (2008).

    Article  CAS  Google Scholar 

  59. Theillet, F.X. et al. Site-specific mapping and time-resolved monitoring of lysine methylation by high-resolution NMR spectroscopy. J. Am. Chem. Soc. 134, 7616–7619 (2012).

    Article  CAS  Google Scholar 

  60. Lippens, G. et al. Towards the understanding the phosphorylation code of tau. Biochem. Soc. Trans. 40, 698–703 (2012).

    Article  CAS  Google Scholar 

  61. Burz, D.S., Dutta, K., Cowburn, D. & Shekhtman, A. Mapping structural interactions using in-cell NMR spectroscopy (STINT-NMR). Nat. Methods 3, 91–93 (2006).

    Article  CAS  Google Scholar 

  62. Burz, D.S. & Shekhtman, A. In-cell biochemistry using NMR spectroscopy. PLoS ONE 3, e2571 (2008).

    Article  Google Scholar 

  63. Hubbard, J.A., MacLachlan, L.K., King, G.W., Jones, J.J. & Fosberry, A.P. Nuclear magnetic resonance spectroscopy reveals the functional state of the signalling protein CheY in vivo in Escherichia coli. Mol. Microbiol. 49, 1191–1200 (2003).

    Article  CAS  Google Scholar 

  64. Banci, L., Barbieri, L., Luchinat, E. & Secci, E. Visualization of redox-controlled protein fold in living cells. Chem. Biol. 20, 747–752 (2013).

    Article  CAS  Google Scholar 

  65. Bermel, W., Bertini, I., Felli, I.C., Kümmerle, R. & Pierattelli, R. 13C direct detection experiments on the paramagnetic oxidized monomeric copper, zinc superoxide dismutase. J. Am. Chem. Soc. 125, 16423–16429 (2003).

    Article  CAS  Google Scholar 

  66. Bermel, W. et al. Speeding up sequence specific assignment of IDPs. J. Biomol. NMR 53, 293–301 (2012).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work has been supported in part by the European Commission Projects INSTRUCT (contract no. 211252), BioNMR (contract no. 261863) and IDPbyNMR (contract no. 264257).

Author information

Authors and Affiliations

Authors

Contributions

I.C.F. and R.P. conceived the protocol, designed and performed NMR experiments, analyzed data and wrote the paper; L.G. designed, performed and wrote the procedure for the preparation of the samples.

Corresponding authors

Correspondence to Isabella C Felli or Roberta Pierattelli.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Data 1

Variants for the acquisition of 2D 13C'-15N correlation experiments. (PDF 435 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Felli, I., Gonnelli, L. & Pierattelli, R. In-cell 13C NMR spectroscopy for the study of intrinsically disordered proteins. Nat Protoc 9, 2005–2016 (2014). https://doi.org/10.1038/nprot.2014.124

Download citation

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nprot.2014.124

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing