Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Design of a functional cyclic HSV1-TK reporter and its application to PET imaging of apoptosis

Abstract

Positron emission tomography (PET) is a sensitive and noninvasive imaging method that is widely used to explore molecular events in living subjects. PET can precisely and quantitatively evaluate cellular apoptosis, which has a crucial role in various physiological and pathological processes. In this protocol, we describe the design and use of an engineered cyclic herpes simplex virus 1–thymidine kinase (HSV1-TK) PET reporter whose kinase activity is specifically switched on by apoptosis. The expression of cyclic TK (cTK) in healthy cells leads to inactive product, whereas the activation of apoptosis through the caspase-3 pathway cleaves cTK, thus restoring its activity and enabling PET imaging. In addition to detailing the design and construction of the cTK plasmid in this protocol, we include assays for evaluating the function and specificity of the cTK reporter in apoptotic cells, such as assays for measuring the cell uptake of PET tracer in apoptotic cells, correlating doxorubicin (Dox)-induced cell apoptosis to cTK function recovery, and in vivo PET imaging of cancer cell apoptosis, and we also include corresponding data acquisition methods. The time to build the entire cTK reporter is 2–3 weeks. The selection of a stable cancer cell line takes 4–6 weeks. The time to implement assays regarding cTK function in apoptotic cells and the in vivo imaging varies depending on the experiment. The cyclization strategy described in this protocol can also be adapted to create other reporter systems for broad biomedical applications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: cTK reporter system design for apoptosis PET imaging.
Figure 2: 18F-FHBG uptake assay from different cTK variants.
Figure 3: Transfection of cTK266-containing cells with firefly luciferase (fLuc) as the cell proliferation indicator.
Figure 4: Characterization of cTK266 reporter in 22B cells.
Figure 5: Caspase-3 specificity evaluation of cTK266 in cells.
Figure 6: In vivo PET imaging and BLI of apoptotic cells after Dox treatment.

Similar content being viewed by others

References

  1. Niu, G. & Chen, X. Molecular imaging with activatable reporter systems. Theranostics 2, 413–423 (2012).

    Article  CAS  Google Scholar 

  2. Massoud, T.F. & Gambhir, S.S. Molecular imaging in living subjects: seeing fundamental biological processes in a new light. Genes Dev. 17, 545–580 (2003).

    Article  CAS  Google Scholar 

  3. Jones, T. The imaging science of positron emission tomography. Eur. J. Nucl. Med. 23, 807–813 (1996).

    Article  CAS  Google Scholar 

  4. Danial, N.N. & Korsmeyer, S.J. Cell death: critical control points. Cell 116, 205–219 (2004).

    Article  CAS  Google Scholar 

  5. Dive, C., Evans, C.A. & Whetton, A.D. Induction of apoptosis—new targets for cancer chemotherapy. Semin. Cancer Biol. 3, 417–427 (1992).

    CAS  PubMed  Google Scholar 

  6. Evan, G.I. & Vousden, K.H. Proliferation, cell cycle and apoptosis in cancer. Nature 411, 342–348 (2001).

    Article  CAS  Google Scholar 

  7. Green, A.M. & Steinmetz, N.D. Monitoring apoptosis in real time. Cancer J. 8, 82–92 (2002).

    Article  Google Scholar 

  8. Blankenberg, F.G. & Strauss, H.W. Recent advances in the molecular imaging of programmed cell death: part I–pathophysiology and radiotracers. J. Nucl. Med. 53, 1659–1662 (2012).

    Article  CAS  Google Scholar 

  9. Blankenberg, F.G. & Strauss, H.W. Recent advances in the molecular imaging of programmed cell death: part II–non-probe-based MRI, ultrasound, and optical clinical imaging techniques. J. Nucl. Med. 54, 1–4 (2013).

    Article  CAS  Google Scholar 

  10. Blankenberg, F.G. Imaging the molecular signatures of apoptosis and injury with radiolabeled annexin V. Proc. Am. Thorac. Soc. 6, 469–476 (2009).

    Article  CAS  Google Scholar 

  11. Hu, S. et al. Longitudinal PET imaging of doxorubicin-induced cell death with 18F-annexin V. Mol. Imaging Biol. 14, 762–770 (2012).

    Article  Google Scholar 

  12. Toretsky, J. et al. Preparation of F-18 labeled annexin V: a potential PET radiopharmaceutical for imaging cell death. Nucl. Med. Biol. 31, 747–752 (2004).

    Article  CAS  Google Scholar 

  13. Hoglund, J. et al. 18F-ML-10, a PET tracer for apoptosis: first human study. J. Nucl. Med. 52, 720–725 (2011).

    Article  Google Scholar 

  14. Krysko, O., De Ridder, L. & Cornelissen, M. Phosphatidylserine exposure during early primary necrosis (oncosis) in JB6 cells as evidenced by immunogold labeling technique. Apoptosis 9, 495–500 (2004).

    Article  CAS  Google Scholar 

  15. Riedl, S.J. & Shi, Y. Molecular mechanisms of caspase regulation during apoptosis. Nat. Rev. Mol. Cell Biol. 5, 897–907 (2004).

    Article  CAS  Google Scholar 

  16. Su, H. et al. Evaluation of [18F]-CP18 as a PET imaging tracer for apoptosis. Mol. Imaging Biol. 15, 739–747 (2013).

    Article  Google Scholar 

  17. Edgington, L.E. et al. Noninvasive optical imaging of apoptosis by caspase-targeted activity-based probes. Nat. Med. 15, 967–973 (2009).

    Article  CAS  Google Scholar 

  18. Laxman, B. et al. Noninvasive real-time imaging of apoptosis. Proc. Natl. Acad. Sci. USA 99, 16551–16555 (2002).

    Article  CAS  Google Scholar 

  19. Shen, B. et al. Positron emission tomography imaging of drug-induced tumor apoptosis with a caspase-triggered nanoaggregation probe. Angew. Chem. Int. Ed. Engl. 52, 10511–10514 (2013).

    Article  CAS  Google Scholar 

  20. Xia, C.F. et al. In vitro and in vivo evaluation of the caspase-3 substrate-based radiotracer [18F]-CP18 for PET imaging of apoptosis in tumors. Mol. Imaging Biol. 15, 748–757 (2013).

    Article  Google Scholar 

  21. Challapalli, A. et al. 18F-ICMT-11, a caspase-3-specific PET tracer for apoptosis: biodistribution and radiation dosimetry. J. Nucl. Med. 54, 1551–1556 (2013).

    Article  CAS  Google Scholar 

  22. Nguyen, Q.D., Challapalli, A., Smith, G., Fortt, R. & Aboagye, E.O. Imaging apoptosis with positron emission tomography: ′bench to bedside′ development of the caspase-3/7 specific radiotracer [18F]ICMT-11. Eur. J. Cancer 48, 432–440 (2012).

    Article  CAS  Google Scholar 

  23. Bullok, K.E. et al. Biochemical and in vivo characterization of a small, membrane-permeant, caspase-activatable far-red fluorescent peptide for imaging apoptosis. Biochemistry 46, 4055–4065 (2007).

    Article  CAS  Google Scholar 

  24. Barnett, E.M., Zhang, X., Maxwell, D., Chang, Q. & Piwnica-Worms, D. Single-cell imaging of retinal ganglion cell apoptosis with a cell-penetrating, activatable peptide probe in an in vivo glaucoma model. Proc. Natl. Acad. Sci. USA 106, 9391–9396 (2009).

    Article  CAS  Google Scholar 

  25. Bardet, P.L. et al. A fluorescent reporter of caspase activity for live imaging. Proc. Natl. Acad. Sci. USA 105, 13901–13905 (2008).

    Article  CAS  Google Scholar 

  26. Niu, G. et al. Longitudinal bioluminescence imaging of the dynamics of doxorubicin-induced apoptosis. Theranostics 3, 190–200 (2013).

    Article  CAS  Google Scholar 

  27. Yaghoubi, S.S. & Gambhir, S.S. Measuring herpes simplex virus thymidine kinase reporter gene expression in vitro. Nat. Protoc. 1, 2137–2142 (2006).

    Article  CAS  Google Scholar 

  28. Zhang, X.X. et al. Comparison of 18F-labeled CXCR4 antagonist peptides for PET imaging of CXCR4 expression. Mol. Imaging Biol. 15, 758–767 (2013).

    Article  Google Scholar 

  29. Xiong, Z. et al. Imaging chemically modified adenovirus for targeting tumors expressing integrin αvβ3 in living mice with mutant herpes simplex virus type 1 thymidine kinase PET reporter gene. J. Nucl. Med. 47, 130–139 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Tjuvajev, J.G. et al. Noninvasive imaging of herpes virus thymidine kinase gene transfer and expression: a potential method for monitoring clinical gene therapy. Cancer Res. 56, 4087–4095 (1996).

    CAS  PubMed  Google Scholar 

  31. Cao, F. et al. In vivo visualization of embryonic stem cell survival, proliferation, and migration after cardiac delivery. Circulation 113, 1005–1014 (2006).

    Article  Google Scholar 

  32. Kang, K.W., Min, J.J., Chen, X. & Gambhir, S.S. Comparison of [14C]FMAU, [3H]FEAU, [14C]FIAU, and [3H]PCV for monitoring reporter gene expression of wild type and mutant herpes simplex virus type 1 thymidine kinase in cell culture. Mol. Imaging Biol. 7, 296–303 (2005).

    Article  Google Scholar 

  33. Chin, F.T. et al. Semiautomated radiosynthesis and biological evaluation of [18F]FEa novel PET imaging agent for HSV1-tk/sr39tk reporter gene expression. Mol. Imaging Biol. 10, 82–91 (2008).

    Article  Google Scholar 

  34. Wang, F. et al. A cyclic HSV1-TK reporter for real-time PET imaging of apoptosis. Proc. Natl. Acad. Sci. USA 111, 5165–5170 (2014).

    Article  CAS  Google Scholar 

  35. Eroshenko, N. & Church, G.M. Mutants of Cre recombinase with improved accuracy. Nat. Commun. 4, 2509 (2013).

    Article  Google Scholar 

  36. Cong, L. et al. Multiplex genome engineering using CRISPR/Cas systems. Science 339, 819–823 (2013).

    Article  CAS  Google Scholar 

  37. Yang, H., Wang, H. & Jaenisch, R. Generating genetically modified mice using CRISPR/Cas-mediated genome engineering. Nat. Protoc. 9, 1956–1968 (2014).

    Article  CAS  Google Scholar 

  38. Ittner, L.M. & Gotz, J. Pronuclear injection for the production of transgenic mice. Nat. Protoc. 2, 1206–1215 (2007).

    Article  CAS  Google Scholar 

  39. Li, L. & Blankenstein, T. Generation of transgenic mice with megabase-sized human yeast artificial chromosomes by yeast spheroplast-embryonic stem cell fusion. Nat. Protoc. 8, 1567–1582 (2013).

    Article  Google Scholar 

  40. Wu, H., Hu, Z. & Liu, X.Q. Protein trans-splicing by a split intein encoded in a split DnaE gene of Synechocystis sp. PCC6803. Proc. Natl. Acad. Sci. USA 95, 9226–9231 (1998).

    Article  CAS  Google Scholar 

  41. Cowsill, C. et al. Central nervous system toxicity of two adenoviral vectors encoding variants of the herpes simplex virus type 1 thymidine kinase: reduced cytotoxicity of a truncated HSV1-TK. Gene Ther. 7, 679–685 (2000).

    Article  CAS  Google Scholar 

  42. Rogers, S., Wells, R. & Rechsteiner, M. Amino acid sequences common to rapidly degraded proteins: the PEST hypothesis. Science 234, 364–368 (1986).

    Article  CAS  Google Scholar 

  43. Li, X. et al. Generation of destabilized green fluorescent protein as a transcription reporter. J. Biol. Chem. 273, 34970–34975 (1998).

    Article  CAS  Google Scholar 

  44. Wild, K., Bohner, T., Folkers, G. & Schulz, G.E. The structures of thymidine kinase from herpes simplex virus type 1 in complex with substrates and a substrate analogue. Protein Sci. 6, 2097–2106 (1997).

    Article  CAS  Google Scholar 

  45. Wurth, C., Thomas, R.M., Folkers, G. & Scapozza, L. Folding and self-assembly of herpes simplex virus type 1 thymidine kinase. J. Mol. Biol. 313, 657–670 (2001).

    Article  CAS  Google Scholar 

  46. Wang, Z. et al. Biomimetic RNA-silencing nanocomplexes: overcoming multidrug resistance in cancer cells. Angew Chem. Int. Ed. Engl. 53, 1997–2001 (2014).

    Article  CAS  Google Scholar 

  47. Nicholson, D.W. et al. Identification and inhibition of the ICE/CED-3 protease necessary for mammalian apoptosis. Nature 376, 37–43 (1995).

    Article  CAS  Google Scholar 

  48. Wang, Z., Chui, W.K. & Ho, P.C. Design of a multifunctional PLGA nanoparticulate drug delivery system: evaluation of its physicochemical properties and anticancer activity to malignant cancer cells. Pharm. Res. 26, 1162–1171 (2009).

    Article  CAS  Google Scholar 

  49. Wang, Z. & Ho, P.C. Self-assembled core-shell vascular-targeted nanocapsules for temporal antivasculature and anticancer activities. Small 6, 2576–2583 (2010).

    Article  CAS  Google Scholar 

  50. Liang, Y., Yan, C. & Schor, N.F. Apoptosis in the absence of caspase 3. Oncogene 20, 6570–6578 (2001).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported, in part, by the Center for Neuroscience and Regeneration Medicine Program at the Henry M. Jackson Foundation, and by the Intramural Research Program of the National Institute of Biomedical Imaging and Bioengineering, US National Institutes of Health (NIH). We thank T. Ozawa (University of Tokyo) for providing us with the cDNAs of DnaE and PEST.

Author information

Authors and Affiliations

Authors

Contributions

Z.W., N.H., G.N. and X.C. conceived and designed this research; Z.W., F.W., N.H. and G.N. performed the experiment; D.O.K. contributed new reagents and analytical tools; Z.W., F.W., G.N., J.T. and X.C. analyzed the data; and Z.W., G.N. and X.C. wrote the manuscript.

Corresponding authors

Correspondence to Gang Niu or Xiaoyuan Chen.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Integrated supplementary information

Supplementary Figure 1 Real-time PCR analysis cTK variant expression level in different stable selected cell colonies.

The number under each bar indicates the cTK variant at specific split sites, and the number in the bracket identifies the cell colony (n=3).

Supplementary Figure 2 Illustration of the stable cell selection procedure.

(Not drawn to scale.)

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1 and 2 (PDF 238 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Z., Wang, F., Hida, N. et al. Design of a functional cyclic HSV1-TK reporter and its application to PET imaging of apoptosis. Nat Protoc 10, 807–821 (2015). https://doi.org/10.1038/nprot.2015.048

Download citation

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nprot.2015.048

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing