Abstract
Cyclodepsipeptides are cyclic peptides in which at least one amide link on the backbone is replaced with an ester link. These natural products present a high structural diversity that corresponds to a broad range of biological activities. Therefore, they are very promising pharmaceutical candidates. Most of the cyclodepsipeptides have been isolated from marine organisms, but they can also originate from terrestrial sources. Within the family of cyclodepsipeptides, 'head-to-side-chain' cyclodepsipeptides have, in addition to the macrocyclic core closed by the ester bond, an arm terminated with a polyketide moiety or a branched amino acid, which makes their synthesis a challenge. This protocol provides guidelines for the synthesis of 'head-to-side-chain cyclodepsipeptides' and includes—as an example—a detailed procedure for preparing pipecolidepsin A. Pipecolidepsin was chosen because it is a very complex 'head-to-side-chain cyclodepsipeptide' of marine origin that shows cytotoxicity in several human cancer cell lines. The procedure begins with the synthesis of the noncommercial protected amino acids (2R,3R,4R)-2-{[(9H-fluoren-9-yl)methoxy]carbonylamino}-3-hydroxy-4,5-dimethylhexanoic acid (Fmoc-AHDMHA-OH), Alloc-pipecolic-OH, (4R,5R)-5-((((9H-fluoren-9-yl)methoxy)carbonylamino)-4-oxo-4-(tritylamino)butyl)-2,2-dimethyl-1,3-dioxolane-4-carboxylic acid (Fmoc-DADHOHA(acetonide, Trt))-OH and the pseudodipeptide (2R,3R,4R)-3-hydroxy-2,4,6-trimethylheptanoic acid ((HTMHA)-D-Asp(OtBu)-OH). It details the assembly of the depsipeptidic skeleton using a fully solid-phase approach (typically on an amino polystyrene resin coupled to 3-(4-hydroxymethylphenoxy)propionic acid (AB linker)), including the key ester formation step. It concludes by describing the macrocyclization step performed on solid phase, and the global deprotection and cleavage of the cyclodepsipeptide from the resin using a trifluoroacetic acid–H2O–triisopropylsilane (TFA−H2O−TIS; 95:2.5:2.5) cocktail, as well as the final purification by semipreparative HPLC. The entire procedure takes ∼2 months to complete.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to the full article PDF.
USD 39.95
Prices may be subject to local taxes which are calculated during checkout







Similar content being viewed by others
References
Antonov, V.K., Shkrob, A.M. & Shemyakin, M.M. Cyclol formation in peptide systems. 3. Rearrangement of N-(beta-hydroxypropionyl)-piperidone into a 10-membered cyclodepsipeptide. Tetrahedron Lett. 4, 439–443 (1963).
Macdonald, C.G. & Shannon, J.S. The structure of the cyclodepsipeptide, angolide. Tetrahedron Lett. 5, 3113–3118 (1964).
Sarabia, F., Chammaa, S., Ruiz, A.S., Ortiz, L.M. & Herrera, F.J.L. Chemistry and biology of cyclic depsipeptides of medicinal and biological interest. Curr. Med. Chem. 11, 1309–1332 (2004).
Andavan, G.S.B. & Lemmens-Gruber, R. Cyclodepsipeptides from marine sponges: natural agents for drug research. Mar. Drugs 8, 810–834 (2010).
Suarez-Jimenez, G.-M., Burgos-Hernandez, A. & Ezquerra-Brauer, J.-M. Bioactive peptides and depsipeptides with anticancer potential: sources from marine animals. Mar. Drugs 10, 963–986 (2012).
Newman, D.J. & Cragg, G.M. Marine-sourced anti-cancer and cancer pain control agents in clinical and late preclinical development. Mar. Drugs 12, 255–278 (2014).
Mehbub, M.F., Lei, J., Franco, C. & Zhang, W. Marine sponge derived natural products between 2001 and 2010: trends and opportunities for discovery of bioactives. Mar. Drugs 12, 4539–4577 (2014).
Sivanathan, S. & Scherkenbeck, J. Cyclodepsipeptides: a rich source of biologically active compounds for drug research. Molecules 19, 12368–12420 (2014).
Kitagaki, J., Shi, G.B., Miyauchi, S., Murakami, S. & Yang, Y.L. Cyclic depsipeptides as potential cancer therapeutics. Anticancer Drugs 26, 259–271 (2015).
Grieco, P.A., Hon, Y.S. & Perezmedrano, A. A convergent, enantiospecific total synthesis of the novel cyclodepsipeptide (+)-jasplakinolide (Jaspamide). J. Am. Chem. Soc. 110, 1630–1631 (1988).
Boger, D.L., Keim, H., Oberhauser, B., Schreiner, E.P. & Foster, C.A. Total synthesis of HUN-7293. J. Am. Chem. Soc. 121, 6197–6205 (1999).
Pelay-Gimeno, M., Tulla-Puche, J. & Albericio, F. 'Head-to-side-chain' cyclodepsipeptides of marine origin. Mar. Drugs 11, 1693–1717 (2013).
Marcucci, E., Tulla-Puche, J. & Albericio, F. Solid-phase synthesis of NMe-IB-01212, a highly N-methylated cyclic peptide. Org. Lett. 14, 612–615 (2012).
Tulla-Puche, J. et al. Enzyme-labile protecting groups for the synthesis of natural products: solid-phase synthesis of thiocoraline. Angew. Chem. Int. Ed. 52, 5726–5730 (2013).
Tsakos, M., Schaffert, E.S., Clement, L.L., Villadsena, N.L. & Poulsen, T.B. Ester coupling reactions–an enduring challenge in the chemical synthesis of bioactive natural products. Nat. Prod. Rep. 32, 605–632 (2015).
Banker, R. & Carmeli, S. Inhibitors of serine proteases from a waterbloom of the cyanobacterium Microcystis sp. Tetrahedron 55, 10835–10844 (1999).
Gao, J. & Hamann, M.T. Chemistry and biology of kahalalides. Chem. Rev. 111, 3208–3235 (2011).
Rinehart, K.L.J. et al. Didemnins: antiviral and antitumor depsipeptides from a Caribbean tunicate. Science 212, 933–935 (1981).
Lee, J., Currano, J.N., Carroll, P.J. & Joullié, M.M. Didemnins, tamandarins and related natural products. Nat. Prod. Rep. 29, 404–424 (2012).
Vervoort, H., Fenical, W. & Epifanio, R.A. Tamandarins A and B: new cytotoxic depsipeptides from a Brazilian ascidian of the family Didemnidae. J. Org. Chem. 65, 782–792 (2000).
Matsunaga, S., Fusetani, N. & Konosu, S. Bioactive marine metabolites IV. Isolation and the amino acid composition of discodermin A, an antimicrobial peptide, from the marine sponge Discodermia kiiensis. J. Nat. Prod. 48, 236–241 (1985).
Li, H., Matsunaga, S. & Fusetani, N. Halicylindramides A–C, antifungal and cytotoxic depsipeptides from the marine sponge Halichondria cylindrata. J. Med. Chem. 38, 338–343 (1995).
Zampella, A. et al. Callipeltin A, an anti-HIV cyclic depsipeptide from the New Caledonian Lithistida sponge Callipelta sp. J. Am. Chem. Soc. 118, 6202–6209 (1996).
Tran, T.D. et al. Cytotoxic cyclic depsipeptides from the Australian marine sponge Neamphius huxleyi. J. Nat. Prod. 75, 2200–2208 (2012).
Ford, P.W. et al. Papuamides A–D, HIV-inhibitory and cytotoxic depsipeptides from the sponges Theonella mirabilis and Theonella swinhoei collected in Papua New Guinea. J. Am. Chem. Soc. 121, 5899–5909 (1999).
Plaza, A. et al. Celebesides A-C and theopapuamides B-D, depsipeptides from an Indonesian sponge that inhibit HIV-1 entry. J. Org. Chem. 74, 504–512 (2009).
Lu, Z. et al. Mirabamides E-H, HIV-inhibitory depsipeptides from the sponge Stelletta clavosa. J. Nat. Prod. 74, 185–193 (2011).
Zampella, A. et al. Homophymines B-E and A1-E1, a family of bioactive cyclodepsipeptides from the sponge Homophymia sp. Org. Biomol. Chem. 7, 4037–4044 (2009).
Rodriguez, R. et al., inventors. Stellatolide analogs as anticancer compounds. Int. Appl. Patent WO2010/007147; filed July 16, 2009; issued January 21, 2010.
Martin, M.J. et al. Stellatolides, a New Cyclodepsipeptide Family from the sponge Ecionemia acervus: isolation, solid-phase total synthesis, and full tructural assignment of stellatolide A. J. Am. Chem. Soc. 136, 6754–6762 (2014).
Coello Molinero, L., Fernández Rodríguez, R., Reyes Benítez, J.F., Francesch Solloso, A.M. & Cuevas Marchante, C. Anticancer Compounds. Int. Appl. Patent WO2010/070078 A1; filed December 18, 2009; issued June 24, 2010.
Pelay Gimeno, M., García Ramos, Y., Tulla Puche, J., Albericio, F. & Martín López, M.J. Synthetic process for the manufacture of pipecolidepsin compounds. Int. Appl. Patent WO2014/108526; filed January 13, 2014; issued July 17, 2014.
Pelay-Gimeno, M. et al. The first total synthesis of the cyclodepsipeptide pipecolidepsin A. Nat. Commun. 4, 2352 (2013).
Medina, R.A. et al. Coibamide A, a potent antiproliferative cyclic depsipeptide from the Panamanian marine cyanobacterium Leptolyngbya sp. J. Am. Chem. Soc. 130, 6324–6325 (2008).
Debono, M. et al. A21978C, a complex of new acidic peptide antibiotics: isolation, chemistry, and mass spectral structure elucidation. J. Antibiot. 40, 761–777 (1987).
Goodreid, J.D. et al. Total synthesis and antibacterial testing of the A54556 cyclic acyldepsipeptides isolated from Streptomyces hawaiiensis. J. Nat. Prod. 77, 2170–2181 (2014).
Ling, L.L. et al. A new antibiotic kills pathogens without detectable resistance. Nature 517, 455–459 (2015).
Xie, W., Ding, D., Zi, W., Li, G. & Ma, D. Total synthesis and structure assignment of papuamide B, a potent marine cyclodepsipeptide with anti-HIV properties. Angew. Chem. Int. Ed. 47, 2844–2848 (2008).
Mazur, S. & Jayalekshmy, P. Chemistry of polymer-bound o-benzyne. Frequency of encounter between substituents on cross-linked polystyrenes. J. Am. Chem. Soc. 101, 677–683 (1979).
Barlos, K. et al. Darstellung geschützter peptid-fragmente unter einsatz substituierter triphenylmethyl-harze. Tetrahedron Lett. 30, 3943–3946 (1989).
Callipeltin, B. et al. Solid-phase total synthesis and structure proof of callipeltin B. J. Am. Chem. Soc. 128, 15392–15393 (2006).
Stolze, S.C., Meltzer, M., Ehrmann, M. & Kaiser, M. Development of a solid-phase approach to the natural product class of Ahp-containing cyclodepsipeptides. Eur. J. Org. Chem. 2012, 1616–1625 (2012).
Tokairin, Y., Takeda, S., Kikuchi, M. & Konno, H. Synthetic studies on homophymine B: solid phase synthesis of a cyclic fragment. Tetrahedron Lett. 56, 2809–2812 (2015).
Albericio, F. & Barany, G. Improved approach for anchoring N-9- fluorenylmethyloxycarbonylamino acids as p-alkoxybenzyl esters in solid-phase peptide synthesis. Int. J. Peptide Protein Res. 26, 92–97 (1985).
Acevedo, C.M., Kogut, E.F. & Lipton, M.A. Synthesis and analysis of the sterically constrained L-glutamine analogues (3S,4R)-3,4-dimethyl-L-glutamine and (3S,4R)-3,4-dimethyl-L-pyroglutamic acid. Tetrahedron 57, 6353–6359 (2001).
Zampella, A. et al. Homophymine A, an anti-HIV cyclodepsipeptide from the sponge Homophymia sp. J. Org. Chem. 7, 5319–5327 (2008).
Carpino, L.A. 1-Hydroxy-7-azabenzotriazole. An efficient peptide coupling additive. J. Am. Chem. Soc. 115, 4397–4398 (1993).
Coste, J., Le-Nguyen, D. & Castro, B. PyBOP: A new peptide coupling reagent devoid of toxic by-product. Tetrahedron Lett. 31, 205–208 (1990).
Carpino, L.A., El-Faham, A., Minor, C.A. & Albericio, F. Advantageous applications of azabenzotriazole (triazolopyridine)-based coupling reagents to solid-phase peptide synthesis. J. Chem. Soc., Chem. Commun. 201–203 (1994).
Albericio, F. et al. On the use of PyAOP, a phosphonium salt derived from HOAt, in solid-phase peptide synthesis. Tetrahedron Lett. 38, 4853–4856 (1997).
Gausepohl, H., Pieles, U. & Frank, R.W. Schiff base analog formation during in situ activation by HBTU and TBTU. In Peptides-Chemistry and Biology: Proceedings of the 12th American Peptide Symposium (eds. Smith, J.A., Rivier, J.E.) 523–524 (ESCOM, Science: Leiden, 1992).
Story, S.C. & Aldrich, J.V. Side-product formation during cyclization with HBTU on a solid support. Int. J. Pept. Protein Res. 43, 292–296 (1994).
Arttamangkul, S., Arbogast, B., Barofsky, D. & Aldrich, J.V. Characterization of synthetic peptide byproducts from cyclization reactions using online HPLC-ion spray and tandem mass spectrometry. Lett. Pept. Sci. 3, 357–370 (1997).
Albericio, F., Bofill, J.M., El-Faham, A. & Kates, S.A. Use of onium salt-based coupling reagents in peptide synthesis. J. Org. Chem. 63, 9678–9683 (1998).
Meienhofer, J. Major Methods of Peptide Bond Formation. In 'The Peptides, Analysis, Synthesis, Biology' (eds. Gross, E. & Meienhofer, J.) Vol. 1, 263 (Academic Press, New York, 1979).
Izdebski, J., Orlowska, A., Anulewicz, R., Witkowska, E. & Fiertek, D. Reinvestigation of the reactions of carbodiimides with alkoxycarbonylamino acid symmetrical anhydrides. Isolation of two N-acylureas. Int. J. Pept. Protein Res. 43, 184–189 (1994).
Steglich, W. & Höfle, G. 4-Dialkylaminopyridines as highly active acylation catalysts. Angew. Chem. Int. Ed. 8, 981 (1969).
Kaiser, E., Colescot, R.L., Bossinger, C.D. & Cook, P.I. Color test for detection of free terminal amino groups in the solid-phase synthesis of peptides. Anal. Biochem. 34, 595–598 (1970).
Gisin, B.F. & Merrifield, R.B. Carboxyl-catalyzed intramolecular aminolysis. Side reaction in solid-phase peptide synthesis. J. Am. Chem. Soc. 94, 3102–3106 (1972).
Khosla, M.C., Smeby, R.R. & Bumpus, F. Failure sequence in solid-phase peptide synthesis due to the presence of an N-alkylamino acid. J. Am. Chem. Soc. 94, 4721–4724 (1972).
Rothe, M. & Mazánek, J. Side-reactions arising on formation of cyclodipeptides in solid-phase peptide synthesis. Angew. Chem. Int. Ed. 11, 293 (1972).
Guibé, F. Allylic protecting groups and their use in a complex environment. Part II: allylic protecting groups and their removal through catalytic palladium π-allyl methodology. Tetrahedron 54, 2967–3042 (1998).
Carpino, L.A. et al. New family of base- and nucleophile-sensitive amino-protecting groups. A Michael-acceptor-based deblocking process. Practical utilization of the 1,1-dioxobenzo[b]thiophene-2-ylmethyloxycarbonyl (Bsmoc) group. J. Am. Chem. Soc. 119, 9915–9916 (1997).
Carpino, L.A. et al. The 1,1-dioxobenzo[b]thiophene-2-ylmethyloxycarbonyl (Bsmoc) amino-protecting group. J. Org. Chem. 64, 4324–4338 (1999).
Meldal, M., Juliano, M.A. & Jansson, A.M. Azido acids in a novel method of solid-phase peptide synthesis. Tetrahedron Lett. 38, 2531–2534 (1997).
Tornoe, C.W., Davis, P., Porreca, F. & Meldal, M. α-Azido acids for direct use in solid-phase peptide synthesis. J. Pept. Sci. 6, 594–602 (2000).
Lundquist, J.T. IV. & Pelletier, J.C. Improved solid-phase peptide synthesis method utilizing α-azide-protected amino acids. Org. Lett. 3, 781–783 (2001).
Alsina, J., Giralt, E. & Albericio, F. Use of N-tritylamino acids and PyAOP for the suppression of diketopiperazine formation in Fmoc/tBu solid-phase peptide synthesis using alkoxybenzyl ester anchoring linkages. Tetrahedron Lett. 37, 4195–4198 (1996).
Isidro-Llobet, A., Guasch-Camell, J., Álvarez, M. & Albericio, F. p-Nitrobenzyloxycarbonyl (pNZ) as a temporary Nα-protecting group in orthogonal solid-phase peptide synthesis – avoiding diketopiperazine and aspartimide formation. Eur. J. Org. Chem. 2005, 3031–3039 (2005).
Ueki, M. & Amemiya, M. Removal of 9-fluorenylmethyloxycarbonyl (Fmoc) group with tetrabutylammonium fluoride. Tetrahedron Lett. 28, 6617–6620 (1987).
Coin, I., Beerbaum, M., Schmieder, P., Bienert, M. & Beyermann, M. Solid-phase synthesis of a cyclodepsipeptide: cotransin. Org. Lett. 10, 3857–3860 (2008).
Wade, J., Bedford, J., Sheppard, R. & Tregear, G. DBU as an N-deprotecting reagent for the fluorenylmethoxycarbonyl group in continuous flow solid-phase peptide synthesis. Pept. Res. 4, 194–199 (1991).
Arndt, H.-D. et al. Divergent solid-phase synthesis of natural product-inspired bipartite cyclodepsipeptides: total synthesis of seragamide A. Chem. Eur. J. 21, 5311–5316 (2015).
Tulla-Puche, J. et al. Solid-phase synthesis of oxathiocoraline by a key intermolecular disulfide dimer. J. Am. Chem. Soc. 129, 5322–5323 (2007).
Sohma, Y. et al. The 'O-acyl isopeptide method' for the synthesis of difficult sequence-containing peptides: application to the synthesis of Alzheimer's disease-related amyloid β peptide (Aβ) 1–42. J. Peptide Sci. 11, 441–451 (2005).
Tulla-Puche, J., Marcucci, E., Fermin, M., Bayó-Puxan, N. & Albericio, F. Protection by conformationally restricted mobility: first solid-phase synthesis of triostin A. Chem. Eur. J. 14, 4475–4478 (2008).
Dölling, R. et al. Piperidine-mediated side product formation for Asp(OBut)-containing peptides. J. Chem. Soc. Chem. Commun. 853–854 (1994).
Subirós-Funosas, R., El-Faham, A. & Albericio, F. Use of oxyma as pH modulatory agent to be used in the prevention of base-driven side reactions and its effect on 2-chlorotrityl chloride resin. Biopolymers 98, 89–97 (2011).
Michels, T., Dölling, R., Haberkorn, U. & Mier, W. Acid-mediated prevention of aspartimide formation in solid phase peptide synthesis. Org. Lett. 14, 5218–5221 (2012).
Wade, J.D., Mathieu, M.N., Macris, M. & Tregear, G.W. Base-induced side reactions in Fmoc-solid phase peptide synthesis: minimization by use of piperazine as Nα-deprotection reagent. Lett. Pept. Sci. 7, 107–112 (2000).
Karlström, A. & Undén, A. A new protecting group for aspartic acid that minimizes piperidine-catalyzed aspartimide formation in fmoc solid phase peptide synthesis. Tetrahedron Lett. 37, 4243–4246 (1996).
Mergler, M., Dick, F., Sax, B., Weiler, P. & Vorherr, T. The aspartimide problem in Fmoc-based SPPS. Part I. J. Peptide Sci. 9, 36–46 (2003).
Mergler, M. & Dick, F. The aspartimide problem in Fmoc-based SPPS. Part III. J. Peptide Sci. 11, 650–657 (2005).
Chen, R. & Tolbert, T.J. Study of on-resin convergent synthesis of N-linked glycopeptides containing a large high mannose N-linked oligosaccharide. J. Am. Chem. Soc. 132, 3211–3216 (2010).
Behrendt, R., Huber, S., Martí, R. & White, P. New t-butyl based aspartate protecting groups preventing aspartimide formation in Fmoc SPPS. J. Pept. Sci. 21, 680 (2015).
Quibell, M., Owen, D., Packman, L.C. & Johnson, T. Suppression of piperidine-mediated side product formation for Asp(OBut)-containing peptides by the use of N-(2-hydroxy-4-methoxybenzyl) (Hmb) backbone amide protection. J. Chem. Soc. Chem. Commun. 2343–2344 (1994).
Cardona, V. et al. Application of Dmb-dipeptides in the Fmoc SPPS of difficult and aspartimide-prone sequences. Int. J. Pept. Res. Ther. 14, 285–292 (2008).
Abdel-Aal, A-B.M., Papageorgiou, G., Quibell, M. & Offer, J. Automated synthesis of backbone protected peptides. Chem. Commun. 50, 8316–8319 (2014).
Isidro-Llobet, A., Just-Baringo, X., Álvarez, M. & Albericio, F. EDOTn and MIM, new peptide backbone protecting groups. Biopolymers 90, 444–449 (2008).
López-Macià, A., Jiménez, J.-C., Royo, M., Giralt, E. & Albericio, F. Synthesis and structure determination of kahalalide F. J. Am. Chem. Soc. 123, 11398–11401 (2001).
Carpino, L.A. & Han, G.Y. 9-Fluorenylmethoxycarbonyl amino-protecting group. J. Org. Chem. 37, 3404–3405 (1972).
Tessier, M. et al. Amino-acids condensations in the preparation of Nα-9-fluorenylmethyloxycarbonylamino-acids with 9-fluorenylmethylchloroformate. Int. J. Pept. Protein Res. 22, 125–128 (1983).
Sigler, G.F., Fuller, W.D., Chaturvedi, N.C., Goodman, M. & Verlander, M. Formation of oligopeptides during the synthesis of 9-fluorenylmethyloxycarbonyl amino acid derivatives. Biopolymers 22, 2157–2162 (1983).
Albericio, F. Orthogonal protecting groups for Nα-amino and C-terminal carboxyl functions in solid-phase peptide synthesis. Biopolymers 55, 123–139 (2000).
Cruz, L.J., Beteta, N.G., Ewenson, A. & Albericio, F. 'One-pot' preparation of N-carbamate protected amino acids via the azide. Org. Proc. Res. Dev. 8, 920–924 (2004).
Acknowledgements
This work was partially supported by CICYT (CTQ2015–68677-R to J.T.-P. and CTQ2012–30930 to F.A.) and the Generalitat de Catalunya (2014SGR 137 to F.A.). J.T.-P. acknowledges a Ramon y Cajal contract (MINECO).
Author information
Authors and Affiliations
Contributions
M.P.-G. carried out the experiments, as reported in the main paper; J.T.-P. tested the protocol and wrote the first draft of the article. All authors discussed the manuscript.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Rights and permissions
About this article
Cite this article
Pelay-Gimeno, M., Albericio, F. & Tulla-Puche, J. Synthesis of complex head-to-side-chain cyclodepsipeptides. Nat Protoc 11, 1924–1947 (2016). https://doi.org/10.1038/nprot.2016.116
Published:
Issue date:
DOI: https://doi.org/10.1038/nprot.2016.116
This article is cited by
-
Computational peptidology approach to the study of the chemical reactivity and bioactivity properties of Aspergillipeptide D, a cyclopentapeptide of marine origin
Scientific Reports (2022)
-
An integrated molecular modeling protocol for drug screening based on conceptual density functional theory and chemoinformatics for the study of marine cyclopeptides
Journal of Molecular Modeling (2021)


