Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Global site-specific analysis of glycoprotein N-glycan processing

Abstract

N-glycans contribute to the folding, stability and functions of the proteins they decorate. They are produced by transfer of the glycan precursor to the sequon Asn-X-Thr/Ser, followed by enzymatic trimming to a high-mannose-type core and sequential addition of monosaccharides to generate complex-type and hybrid glycans. This process, mediated by the concerted action of multiple enzymes, produces a mixture of related glycoforms at each glycosite, making analysis of glycosylation difficult. To address this analytical challenge, we developed a robust semiquantitative mass spectrometry (MS)-based method that determines the degree of glycan occupancy at each glycosite and the proportion of N-glycans processed from high-mannose type to complex type. It is applicable to virtually any glycoprotein, and a complete analysis can be conducted with 30 μg of protein. Here, we provide a detailed description of the method that includes procedures for (i) proteolytic digestion of glycoprotein(s) with specific and nonspecific proteases; (ii) denaturation of proteases by heating; (iii) sequential treatment of the glycopeptide mixture with two endoglycosidases, Endo H and PNGase F, to create unique mass signatures for the three glycosylation states; (iv) LC-MS/MS analysis; and (v) data analysis for identification and quantitation of peptides for the three glycosylation states. Full coverage of site-specific glycosylation of glycoproteins is achieved, with up to thousands of high-confidence spectra hits for each glycosite. The protocol can be performed by an experienced technician or student/postdoc with basic skills for proteomics experiments and takes 7 d to complete.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: N-linked glycan processing in the endoplasmic reticulum and Golgi apparatus.
Figure 2: Schematic overview of the protocol.
Figure 3: Validation of sequential endoglycosidase treatment.
Figure 4: Validation of MS detection of glycotypes.
Figure 5: Application of the protocol for characterization of site-specific N-glycan processing of recombinant glycoprotein therapeutics and serum glycoproteins.
Figure 6: Application of the protocol for characterization of site-specific N-glycan processing of virus envelope glycoproteins.

Similar content being viewed by others

References

  1. Helenius, A. & Aebi, M. Intracellular functions of N-linked glycans. Science 291, 2364–2369 (2001).

    CAS  PubMed  Google Scholar 

  2. Mathys, L., Francois, K.O., Quandte, M., Braakman, I. & Balzarini, J. Deletion of the highly conserved N-glycan at Asn260 of HIV-1 gp120 affects folding and lysosomal degradation of gp120, and results in loss of viral infectivity. PLoS ONE 9, e101181 (2014).

    PubMed Central  PubMed  Google Scholar 

  3. Rudd, P.M., Elliott, T., Cresswell, P., Wilson, I.A. & Dwek, R.A. Glycosylation and the immune system. Science 291, 2370–2376 (2001).

    CAS  PubMed  Google Scholar 

  4. Ohtsubo, K. & Marth, J.D. Glycosylation in cellular mechanisms of health and disease. Cell 126, 855–867 (2006).

    CAS  PubMed  Google Scholar 

  5. Balog, C.I.A. et al. N-glycosylation of colorectal cancer tissues. Mol. Cell Proteomics 11, 571–585 (2012).

    CAS  PubMed Central  PubMed  Google Scholar 

  6. de Leoz, M.L.A. et al. High-mannose glycans are elevated during breast cancer progression. Mol. Cell Proteomics 10 http://www.grits-toolbox.org/ (2011).

  7. de Vries, R.P. et al. The influenza A virus hemagglutinin glycosylation state affects receptor-binding specificity. Virology 403, 17–25 (2010).

    CAS  PubMed  Google Scholar 

  8. Khatri, K. et al. Integrated omics and computational glycobiology reveal structural basis for influenza A virus glycan microheterogeneity and host interactions. Mol. Cell. Proteomics 15, 1895–1912 (2016).

    CAS  PubMed Central  PubMed  Google Scholar 

  9. Wanzeck, K., Boyd, K.L. & McCullers, J.A. Glycan shielding of the influenza virus hemagglutinin contributes to immunopathology in mice. Am. J. Resp. Crit. Care 183, 767–773 (2011).

    CAS  Google Scholar 

  10. Cao, L.W. et al. Global site-specific N-glycosylation analysis of HIV envelope glycoprotein. Nat. Commun. 8, 14954 (2017).

    CAS  PubMed Central  PubMed  Google Scholar 

  11. Falkowska, E. et al. Broadly neutralizing HIV antibodies define a glycan-dependent epitope on the prefusion conformation of gp41 on cleaved envelope trimers. Immunity 40, 657–668 (2014).

    CAS  PubMed Central  PubMed  Google Scholar 

  12. Julien, J.P. et al. Broadly neutralizing antibody PGT121 allosterically modulates CD4 binding via recognition of the HIV-1 gp120 V3 base and multiple surrounding glycans. PLoS Pathog. 9, e1003342 (2013).

    CAS  PubMed Central  PubMed  Google Scholar 

  13. Garces, F. et al. Structural evolution of glycan recognition by a family of potent HIV antibodies. Cell 159, 69–79 (2014).

    CAS  PubMed Central  PubMed  Google Scholar 

  14. Sok, D. et al. Promiscuous glycan site recognition by antibodies to the high-mannose patch of gp120 broadens neutralization of HIV. Sci. Transl. Med. 6, 236ra63 (2014).

    PubMed Central  PubMed  Google Scholar 

  15. Blattner, C. et al. Structural delineation of a quaternary, cleavage-dependent epitope at the gp41-gp120 interface on intact HIV-1 Env trimers. Immunity 40, 669–680 (2014).

    CAS  PubMed Central  PubMed  Google Scholar 

  16. Morell, A.G., Gregoriadis, G., Scheinberg, I.H., Hickman, J. & Ashwell, G. The role of sialic acid in determining the survival of glycoproteins in the circulation. J. Biol. Chem. 246, 1461–1467 (1971).

    CAS  PubMed  Google Scholar 

  17. Doores, K.J. et al. Envelope glycans of immunodeficiency virions are almost entirely oligomannose antigens. Proc. Natl. Acad. Sci. USA 107, 13800–13805 (2010).

    CAS  PubMed  Google Scholar 

  18. Pritchard, L.K. et al. Structural constraints determine the glycosylation of HIV-1 envelope trimers. Cell Rep. 11, 1604–1613 (2015).

    CAS  PubMed Central  PubMed  Google Scholar 

  19. Raska, M. et al. Glycosylation patterns of HIV-1 gp120 depend on the type of expressing cells and affect antibody recognition. J. Biol. Chem. 285, 20860–20869 (2010).

    CAS  PubMed Central  PubMed  Google Scholar 

  20. Kong, L. et al. Expression-system-dependent modulation of HIV-1 envelope glycoprotein antigenicity and immunogenicity. J. Mol. Biol. 403, 131–147 (2010).

    CAS  PubMed Central  PubMed  Google Scholar 

  21. Vance, B.A., Wu, W., Ribaudo, R.K., Segal, D.M. & Kearse, K.P. Multiple dimeric forms of human CD69 result from differential addition of N-glycans to typical (Asn-X-Ser/Thr) and atypical (Asn-X-cys) glycosylation motifs. J. Biol. Chem. 272, 23117–23122 (1997).

    CAS  PubMed  Google Scholar 

  22. Sun, S.S. & Zhang, H. Identification and validation of atypical N-glycosylation sites. Anal. Chem. 87, 11948–11951 (2015).

    CAS  PubMed Central  PubMed  Google Scholar 

  23. Anderson, D.R., Atkinson, P.H. & Grimes, W.J. Major carbohydrate structures at five glycosylation sites on murine IgM determined by high resolution 1H-NMR spectroscopy. Arch. Biochem. Biophys. 243, 605–618 (1985).

    CAS  PubMed  Google Scholar 

  24. Arnold, J.N. et al. Human serum IgM glycosylation - Identification of glycoforms that can bind to mannan-binding lectin. J. Biol. Chem. 280, 29080–29087 (2005).

    CAS  PubMed  Google Scholar 

  25. An, Y., McCullers, J.A., Alymova, I., Parsons, L.M. & Cipollo, J.F. Glycosylation analysis of engineered H3N2 influenza A virus hemagglutinins with sequentially added historically relevant glycosylation sites. J. Proteome Res. 14, 3957–3969 (2015).

    CAS  PubMed  Google Scholar 

  26. Parsons, L.M., An, Y., de Vries, R.P., de Haan, C.A. & Cipollo, J.F. Glycosylation characterization of an influenza H5N7 hemagglutinin series with engineered glycosylation patterns: implications for structure-function relationships. J. Proteome Res. 16, 398–412 (2017).

    CAS  PubMed  Google Scholar 

  27. Go, E.P. et al. Glycosylation benchmark profile for HIV-1 envelope glycoprotein production based on eleven Env trimers. J. Virol. 91 e02428-16 (2017).

    PubMed Central  PubMed  Google Scholar 

  28. Go, E.P. et al. Comparative analysis of the glycosylation profiles of membrane-anchored HIV-1 envelope glycoprotein trimers and soluble gp140. J. Virol. 89, 8245–8257 (2015).

    CAS  PubMed Central  PubMed  Google Scholar 

  29. Behrens, A.J. et al. Composition and antigenic effects of individual glycan sites of a trimeric HIV-1 envelope glycoprotein. Cell Rep. 14, 2695–2706 (2016).

    CAS  PubMed Central  PubMed  Google Scholar 

  30. Zaia, J. Mass spectrometry and the emerging field of glycomics. Chem. Biol. 15, 881–892 (2008).

    CAS  PubMed Central  PubMed  Google Scholar 

  31. Aldredge, D., An, H.J., Tang, N., Waddell, K. & Lebrilla, C.B. Annotation of a serum N-glycan library for rapid identification of structures. J. Proteome Res. 11, 1958–1968 (2012).

    CAS  PubMed Central  PubMed  Google Scholar 

  32. Cao, L.W. et al. Sample preparation for mass spectrometric analysis of human serum N-glycans using hydrophilic interaction chromatography-based solid phase extraction. Analyst 139, 4538–4546 (2014).

    CAS  PubMed  Google Scholar 

  33. Pang, P.C. et al. Human sperm binding is mediated by the sialyl-Lewis(x) oligosaccharide on the zona pellucida. Science 333, 1761–1764 (2011).

    CAS  PubMed  Google Scholar 

  34. Ashline, D., Singh, S., Hanneman, A. & Reinhold, V. Congruent strategies for carbohydrate sequencing. 1. Mining structural details by MSn. Anal. Chem. 77, 6250–6262 (2005).

    CAS  PubMed Central  PubMed  Google Scholar 

  35. Jiang, H.T., Wu, S.L., Karger, B.L. & Hancock, W.S. Characterization of the glycosylation occupancy and the active site in the follow-on protein therapeutic: TNK-tissue plasminogen activator. Anal. Chem. 82, 6154–6162 (2010).

    CAS  PubMed Central  PubMed  Google Scholar 

  36. Bones, J., Mittermayr, S., O′Donoghue, N., Guttman, A. & Rudd, P.M. Ultra performance liquid chromatographic profiling of serum N-Glycans for fast and efficient identification of cancer associated alterations in glycosylation. Anal. Chem. 82, 10208–10215 (2010).

    CAS  PubMed  Google Scholar 

  37. Zauner, G., Deelder, A.M. & Wuhrer, M. Recent advances in hydrophilic interaction liquid chromatography (HILIC) for structural glycomics. Electrophoresis 32, 3456–3466 (2011).

    CAS  PubMed  Google Scholar 

  38. Kolarich, D., Jensen, P.H., Altmann, F. & Packer, N.H. Determination of site-specific glycan heterogeneity on glycoproteins. Nat. Protoc. 7, 1285–1298 (2012).

    CAS  PubMed  Google Scholar 

  39. Huffman, J.E. et al. Comparative performance of four methods for high-throughput glycosylation analysis of immunoglobulin G in genetic and epidemiological research. Mol. Cell Proteomics 13, 1598–1610 (2014).

    CAS  PubMed Central  PubMed  Google Scholar 

  40. Zhang, H., Li, X.J., Martin, D.B. & Aebersold, R. Identification and quantification of N-linked glycoproteins using hydrazide chemistry, stable isotope labeling and mass spectrometry. Nat. Biotechnol. 21, 660–666 (2003).

    CAS  PubMed  Google Scholar 

  41. Kaji, H. et al. Lectin affinity capture, isotope-coded tagging and mass spectrometry to identify N-linked glycoproteins. Nat. Biotechnol. 21, 667–672 (2003).

    CAS  PubMed  Google Scholar 

  42. Wada, Y., Tajiri, M. & Yoshida, S. Hydrophilic affinity isolation and MALDI multiple-stage tandem mass spectrometry of glycopeptides for glycoproteomics. Anal. Chem. 76, 6560–6565 (2004).

    CAS  PubMed  Google Scholar 

  43. Deeb, S.J., Cox, J., Schmidt-Supprian, M. & Mann, M. N-linked glycosylation enrichment for in-depth cell surface proteomics of diffuse large B-cell lymphoma subtypes. Mol. Cell Proteomics 13, 240–251 (2014).

    CAS  PubMed  Google Scholar 

  44. Zielinska, D.F., Gnad, F., Wisniewski, J.R. & Mann, M. Precision mapping of an in vivo N-glycoproteome reveals rigid topological and sequence constraints. Cell 141, 897–907 (2010).

    CAS  PubMed  Google Scholar 

  45. Sun, S.S. et al. Comprehensive analysis of protein glycosylation by solid-phase extraction of N-linked glycans and glycosite-containing peptides. Nat. Biotechnol. 34, 84–88 (2016).

    CAS  PubMed  Google Scholar 

  46. Thaysen-Andersen, M., Packer, N.H. & Schulz, B.L. Maturing glycoproteomics technologies provide unique structural insights into the N-glycoproteome and its regulation in health and disease. Mol. Cell Proteomics 15, 1773–1790 (2016).

    CAS  PubMed Central  PubMed  Google Scholar 

  47. Yang, N. et al. Quantitation of site-specific glycosylation in manufactured recombinant monoclonal antibody drugs. Anal. Chem. 88, 7091–7100 (2016).

    CAS  PubMed Central  PubMed  Google Scholar 

  48. Panico, M. et al. Mapping the complete glycoproteome of virion-derived HIV-1 gp120 provides insights into broadly neutralizing antibody binding. Sci. Rep. 6, 32956 (2016).

    CAS  PubMed Central  PubMed  Google Scholar 

  49. Cao, L.W. et al. Application of a strong anion exchange material in electrostatic repulsion-hydrophilic interaction chromatography for selective enrichment of glycopeptides. J. Chromatogr. A 1299, 18–24 (2013).

    CAS  PubMed  Google Scholar 

  50. Sun, B.Y. et al. Shotgun glycopeptide capture approach coupled with mass spectrometry for comprehensive glycoproteomics. Mol. Cell Proteomics 6, 141–149 (2007).

    PubMed  Google Scholar 

  51. Thaysen-Andersen, M. et al. Human neutrophils secrete bioactive paucimannosidic proteins from azurophilic granules into pathogen-infected sputum. J. Biol. Chem. 290, 8789–8802 (2015).

    CAS  PubMed Central  PubMed  Google Scholar 

  52. Cao, L.W. et al. N-glycosylation site analysis of proteins from Saccharomyces cerevisiae by using hydrophilic interaction liquid chromatography-based enrichment, parallel deglycosylation, and mass spectrometry. J. Proteome Res. 13, 1485–1493 (2014).

    CAS  PubMed  Google Scholar 

  53. Wei, X.P. et al. Antibody neutralization and escape by HIV-1. Nature 422, 307–312 (2003).

    CAS  PubMed  Google Scholar 

  54. Sok, D. et al. A prominent site of antibody vulnerability on HIV envelope incorporates a motif associated with CCR5 binding and its camouflaging glycans. Immunity 45, 31–45 (2016).

    CAS  PubMed Central  PubMed  Google Scholar 

  55. Burton, D.R. & Hangartner, L. Broadly neutralizing antibodies to HIV and their role in vaccine design. Annu. Rev. Immunol. 34, 635–659 (2016).

    CAS  PubMed Central  PubMed  Google Scholar 

  56. McCoy, L.E. & McKnight, A. Lessons learned from humoral responses of HIV patients. Curr. Opin. HIV AIDS 12, 195–202 (2017).

    CAS  PubMed  Google Scholar 

  57. Julien, J.P. et al. Crystal structure of a soluble cleaved HIV-1 envelope trimer. Science 342, 1477–1483 (2013).

    CAS  PubMed  Google Scholar 

  58. Kong, L. et al. Supersite of immune vulnerability on the glycosylated face of HIV-1 envelope glycoprotein gp120. Nat. Struct. Mol. Biol. 20, 796–803 (2013).

    CAS  PubMed Central  PubMed  Google Scholar 

  59. Amin, M.N. et al. Synthetic glycopeptides reveal the glycan specificity of HIV-neutralizing antibodies. Nat. Chem. Biol. 9, 521–526 (2013).

    CAS  PubMed Central  PubMed  Google Scholar 

  60. Mouquet, H. et al. Complex-type N-glycan recognition by potent broadly neutralizing HIV antibodies. Proc. Natl. Acad. Sci. USA. 109, E3268–E3277 (2012).

    CAS  PubMed  Google Scholar 

  61. Stavenhagen, K. et al. Quantitative mapping of glycoprotein micro-heterogeneity and macro-heterogeneity: an evaluation of mass spectrometry signal strengths using synthetic peptides and glycopeptides. J. Mass Spectrom. 48, 627–639 (2013).

    CAS  PubMed  Google Scholar 

  62. Behrens, A.J. et al. Molecular architecture of the cleavage-dependent mannose patch on a soluble HIV-1 envelope glycoprotein trimer. J. Virol. 91, e01894-16 (2017).

    PubMed Central  PubMed  Google Scholar 

  63. Eshghi, S.T., Shah, P., Yang, W.M., Li, X.D. & Zhang, H. GPQuest: a spectral library matching algorithm for site-specific assignment of tandem mass spectra to intact N-glycopeptides. Anal. Chem. 87, 5181–5188 (2015).

    PubMed Central  Google Scholar 

  64. Khatri, K., Klein, J.A. & Zaia, J. Use of an informed search space maximizes confidence of site-specific assignment of glycoprotein glycosylation. Anal. Bioanal. Chem. 409, 607–618 (2017).

    CAS  PubMed  Google Scholar 

  65. Hao, P.L., Ren, Y., Alpert, A.J. & Sze, S.K. Detection, evaluation and minimization of nonenzymatic deamidation in proteomic sample preparation. Mol. Cell. Proteomics 10, O111.00938 (2011).

    Google Scholar 

  66. MacCoss, M.J. et al. Shotgun identification of protein modifications from protein complexes and lens tissue. Proc. Natl. Acad. Sci. USA 99, 7900–7905 (2002).

    CAS  PubMed  Google Scholar 

  67. Angel, P.M., Lim, J.M., Wells, L., Bergmann, C. & Orlando, R. A potential pitfall in 18O-based N-linked glycosylation site mapping. Rapid Comm. Mass Spectrom. 21, 674–682 (2007).

    CAS  Google Scholar 

  68. Wolters, D.A., Washburn, M.P. & Yates, J.R. An automated multidimensional protein identification technology for shotgun proteomics. Anal. Chem. 73, 5683–5690 (2001).

    CAS  PubMed  Google Scholar 

  69. Pallesen, J. et al. Immunogenicity and structures of a rationally designed prefusion MERS-CoV spike antigen. Proc. Natl. Acad. Sci. USA 114, E7348–E7357 (2017).

    CAS  PubMed  Google Scholar 

  70. Imre, T. et al. Glycosylation site analysis of human alpha-1-acid glycoprotein (AGP) by capillary liquid chromatography-electrospray mass spectrometry. J. Mass Spectrom. 40, 1472–1483 (2005).

    CAS  PubMed  Google Scholar 

  71. Pabst, M. et al. A microarray-matrix-assisted laser desorption/ionization-mass spectrometry approach for site-specific protein N-glycosylation analysis, as demonstrated for human serum immunoglobulin M (IgM). Mol. Cell Proteomics 14, 1645–1656 (2015).

    CAS  PubMed Central  PubMed  Google Scholar 

  72. Tang, N.L.S. Chemical diagnostics from bench to bedside preface. Top. Curr. Chem. 336, V–VI (2014).

    Google Scholar 

  73. Satomi, Y., Shimonishi, Y., Hase, T. & Takao, T. Site-specific carbohydrate profiling of human transferrin by nano-flow liquid chromatography/electrospray ionization mass spectrometry. Rapid Commun. Mass Spectrom. 18, 2983–2988 (2004).

    CAS  PubMed  Google Scholar 

  74. Nilsson, J. et al. Enrichment of glycopeptides for glycan structure and attachment site identification. Nat. Methods 6, 809–811 (2009).

    CAS  PubMed  Google Scholar 

  75. Hulsmeier, A.J., Tobler, M., Burda, P. & Hennet, T. Glycosylation site occupancy in health, congenital disorder of glycosylation and fatty liver disease. Sci. Rep. 6, 33927 (2016).

    CAS  PubMed Central  PubMed  Google Scholar 

  76. Guttman, M. et al. CD4-induced activation in a soluble HIV-1 Env trimer. Structure 22, 974–984 (2014).

    CAS  PubMed Central  PubMed  Google Scholar 

  77. Pancera, M. et al. Structural basis for diverse N-glycan recognition by HIV-1-neutralizing V1-V2-directed antibody PG16. Nat. Struct. Mol. Biol. 20, 804–813 (2013).

    CAS  PubMed Central  PubMed  Google Scholar 

  78. McLellan, J.S. et al. Structure of HIV-1 gp120 V1/V2 domain with broadly neutralizing antibody PG9. Nature 480, 336–343 (2011).

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by National Institutes of Health (NIH) grants R01AI113867 (J.C.P., J.R.Y. and W.R. Schief), UM1 AI100663 (D.R.B. and J.C.P.), R01AI127521 (J.S.M.), and P41 GM103533 (J.R.Y.).

Author information

Authors and Affiliations

Authors

Contributions

L.C., J.R.Y., and J.C.P. designed the research. L.C. prepared samples for MS analysis. J.K.D., L.C., C.M.D., and Y.M. performed the MS analysis. L.C. and S.-K.R.P. analyzed the data. N.W. and M.P. expressed and purified Env proteins. J.S.M., D.R.B., J.R.Y., and J.C.P. supervised the project. L.C. and J.C.P. wrote the manuscript.

Corresponding author

Correspondence to James C Paulson.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Integrated supplementary information

Supplementary Figure 1 Identification of peptides with multiple glycosylation sites with the protocol.

MS/MS spectra and fragment assignment of the (a) di-glycosylated, (b) tri-glycosylated, and (c) tetra-glycosylated peptides derived from BG505 SOSIP.664.

Supplementary Figure 2 Scatter plot of site-specific N-glycan processing of MERS-CoV S protein with a breakdown on the used proteases.

(a) Triple digestion, (b) the combination of trypsin and chymotrypsin, (c) chymotrypsin. The proportions of high mannose and complex type glycans at those glycosites highlighted in yellow were assigned based on the proportion of spectra hits since peak area did not reach the threshold. Mean ± SEM were plotted.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1 and 2, and Supplementary Tables 1–5. (PDF 503 kb)

Life Science Reporting Summary (PDF 129 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, L., Diedrich, J., Ma, Y. et al. Global site-specific analysis of glycoprotein N-glycan processing. Nat Protoc 13, 1196–1212 (2018). https://doi.org/10.1038/nprot.2018.024

Download citation

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nprot.2018.024

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research