Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Impact of race/ethnicity on molecular pathways in human cancer

Abstract

Understanding the molecular circuitry of the cancer cell is within the grasp of the basic scientist; however, harnessing this knowledge to predict cancer risk requires integration of molecular and population sciences. But, what role, if any, does race/ethnicity have in cancer research and, more specifically, in the nature of genetic and epigenetic alterations that programme the malignant behaviour of the cancer cell?

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Classification of major racial/ethnic groups, based on the migration of modern Homo sapiens.

Similar content being viewed by others

References

  1. Cavalli-Sforza, L. L. & Bodmer, W. F. The Genetics of Human Populations (W. H. Freeman, San Francisco, 1971).

    Google Scholar 

  2. Lee, S. S., Mountain, J. & Koenig, B. A. The meanings of “race” in the new genomics: implications for health disparities research. Yale J. Health Policy Law Ethics 1, 33–75 (2001).

    CAS  PubMed  Google Scholar 

  3. Weir, H. K. et al. Annual report to the nation on the status of cancer, 1975-2000, featuring the uses of surveillance data for cancer prevention and control. J. Natl Cancer Inst. 95, 1276–1299 (2003).

    Article  PubMed  Google Scholar 

  4. Howe, H. L. et al. Annual report to the nation on the status of cancer (1973 through 1998), featuring cancers with recent increasing trends. J. Natl Cancer Inst. 93, 824–842 (2001).

    Article  CAS  PubMed  Google Scholar 

  5. Ragland, K. E., Selvin, S. & Merrill, D. W. Black–white differences in stage-specific cancer survival: analysis of seven selected sites. Am. J. Epidemiol. 133, 672–682 (1991).

    Article  CAS  PubMed  Google Scholar 

  6. Carter, C. L., Allen, C. & Henson, D. E. Relation of tumor size, lymph node status, and survival in 24,740 breast cancer cases. Cancer 63, 181–187 (1989).

    Article  CAS  PubMed  Google Scholar 

  7. Boyer-Chammard, A., Taylor, T. H. & Anton-Culver, H. Survival differences in breast cancer among racial/ethnic groups: a population-based study. Cancer Detect. Prev. 23, 463–473 (1999).

    Article  CAS  PubMed  Google Scholar 

  8. O'Malley, C. D., Le, G. M., Glaser, S. L., Shema, S. J. & West, D. W. Socioeconomic status and breast carcinoma survival in four racial/ethnic groups: a population-based study. Cancer 97, 1303–1311 (2003).

    Article  PubMed  Google Scholar 

  9. Wrensch, M., Minn, Y., Chew, T., Bondy, M. & Berger, M. S. Epidemiology of primary brain tumors: current concepts and review of the literature. Neuro-oncol. 4, 278–299 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Barnholtz-Sloan, J. S., Sloan, A. E. & Schwartz, A. G. Racial differences in survival after diagnosis with primary malignant brain tumor. Cancer 98, 603–609 (2003).

    Article  PubMed  Google Scholar 

  11. Shaw, E. G. et al. Ethnic differences in survival of glioblastoma (GBM): a secondary analysis of the radiation therapy oncology group (ROTC) recursive partioning analysis (RPA) database. Neuro-oncol. 5, 296–297 (2003).

    Google Scholar 

  12. Schwartz, R. S. Racial profiling in medical research. N. Engl. J. Med. 344, 1392–1393 (2001).

    Article  CAS  PubMed  Google Scholar 

  13. Risch, N., Burchard, E., Ziv, E. & Tang, H. Categorization of humans in biomedical research: genes, race and disease [comment]. Genome Biol. 3, 2007 (2002).

    Article  Google Scholar 

  14. Burchard, E. G. et al. The importance of race and ethnic background in biomedical research and clinical practice. N. Engl. J. Med. 348, 1170–1175 (2003).

    Article  PubMed  Google Scholar 

  15. Cavalli-Sforza, L. L. & Feldman, M. W. The application of molecular genetic approaches to the study of human evolution. Nature Genet. 33 (Suppl.), S266–S275 (2003).

    Article  CAS  Google Scholar 

  16. Hadley, T. J. & Peiper, S. C. From malaria to chemokine receptor: the emerging physiologic role of the Duffy blood group antigen. Blood 89, 3077–3091 (1997).

    Article  CAS  PubMed  Google Scholar 

  17. Tournamille, C., Colin, Y., Cartron, J. P. & Le Van Kim, C. Disruption of a GATA motif in the Duffy gene promoter abolishes erythroid gene expression in Duffy-negative individuals. Nature Genet. 10, 224–228 (1995).

    Article  CAS  PubMed  Google Scholar 

  18. Smith, M. W. et al. Markers for mapping by admixture linkage disequilibrium in African American and Hispanic populations. Am. J. Hum. Genet. 69, 1080–1094 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Parra, E. J. et al. Ancestral proportions and admixture dynamics in geographically defined African Americans living in South Carolina. Am. J. Phys. Anthropol. 114, 18–29 (2001).

    Article  CAS  PubMed  Google Scholar 

  20. Neuhausen, S. L. et al. Haplotype and phenotype analysis of six recurrent BRCA1 mutations in 61 families: results of an international study. Am. J. Hum. Genet. 58, 271–280 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Berman, D. B. et al. A common mutation in BRCA2 that predisposes to a variety of cancers is found in both Jewish Ashkenazi and non-Jewish individuals. Cancer Res. 56, 3409–3414 (1996).

    CAS  PubMed  Google Scholar 

  22. Moslehi, R. et al. BRCA1 and BRCA2 mutation analysis of 208 Ashkenazi Jewish women with ovarian cancer. Am. J. Hum. Genet. 66, 1259–1272 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Struewing, J. P. et al. The carrier frequency of the BRCA1 185delAG mutation is approximately 1 percent in Ashkenazi Jewish individuals. Nature Genet. 11, 198–200 (1995).

    Article  CAS  PubMed  Google Scholar 

  24. Roa, B. B., Boyd, A. A., Volcik, K. & Richards, C. S. Ashkenazi Jewish population frequencies for common mutations in BRCA1 and BRCA2. Nature Genet. 14, 185–187 (1996).

    Article  CAS  PubMed  Google Scholar 

  25. Robson, M. et al. BRCA-associated breast cancer: absence of a characteristic immunophenotype. Cancer Res. 58, 1839–1842 (1998).

    CAS  PubMed  Google Scholar 

  26. Lee, J. S. et al. Survival after breast cancer in Ashkenazi Jewish BRCA1 and BRCA2 mutation carriers. J. Natl Cancer Inst. 91, 259–263 (1999).

    Article  CAS  PubMed  Google Scholar 

  27. Ravid, A. et al. Immunohistochemical analyses of sporadic and familial (185delAG carriers) ovarian cancer in Israel. Eur. J. Cancer 36, 1120–1124 (2000).

    Article  CAS  PubMed  Google Scholar 

  28. Yair, D. et al. p53 and WAF1 polymorphisms in Jewish-Israeli women with epithelial ovarian cancer and its association with BRCA mutations. BJOG 107, 849–854 (2000).

    Article  CAS  PubMed  Google Scholar 

  29. Gryfe, R., Di Nicola, N., Gallinger, S. & Redston, M. Somatic instability of the APC I1307K allele in colorectal neoplasia. Cancer Res. 58, 4040–4043 (1998).

    CAS  PubMed  Google Scholar 

  30. Laken, S. J. et al. Familial colorectal cancer in Ashkenazim due to a hypermutable tract in APC. Nature Genet. 17, 79–83 (1997).

    Article  CAS  PubMed  Google Scholar 

  31. Prior, T. W. et al. The I1307K polymorphism of the APC gene in colorectal cancer. Gastroenterology 116, 58–63 (1999).

    Article  CAS  PubMed  Google Scholar 

  32. Rozen, P. et al. Prevalence of the I1307K APC gene variant in Israeli Jews of differing ethnic origin and risk for colorectal cancer. Gastroenterology 116, 54–57 (1999).

    Article  CAS  PubMed  Google Scholar 

  33. Woodage, T. et al. The APC I1307K allele and cancer risk in a community-based study of Ashkenazi Jews. Nature Genet. 20, 62–65 (1998).

    Article  CAS  PubMed  Google Scholar 

  34. Strul, H. et al. The I1307K adenomatous polyposis coli gene variant does not contribute in the assessment of the risk for colorectal cancer in Ashkenazi Jews. Cancer Epidemiol. Biomarkers Prev. 12, 1012–1015 (2003).

    CAS  PubMed  Google Scholar 

  35. Tobacco use among U. S. racial/ethnic minority groups: African Americans, American Indians and Alaska Natives, Asian Americans and Pacific Islanders, Hispanics. A Report of the Surgeon General. Executive summary. MMWR Recomm. Rep. 47, 1–16 (1998).

  36. Kensler, T. W., Qian, G. S., Chen, J. G. & Groopman, J. D. Translational strategies for cancer prevention in liver. Nature Rev. Cancer 3, 321–329 (2003).

    Article  CAS  Google Scholar 

  37. Ming, L. et al. Dominant role of hepatitis B virus and cofactor role of aflatoxin in hepatocarcinogenesis in Qidong, China. Hepatology 36, 1214–1220 (2002).

    Article  CAS  PubMed  Google Scholar 

  38. Levy, L., Renard, C. A., Wei, Y. & Buendia, M. A. Genetic alterations and oncogenic pathways in hepatocellular carcinoma. Ann. NY Acad. Sci. 963, 21–36 (2002).

    Article  CAS  PubMed  Google Scholar 

  39. Shapiro, G. I., Edwards, C. D. & Rollins, B. J. The physiology of p16INK4A-mediated G1 proliferative arrest. Cell Biochem. Biophys. 33, 189–197 (2000).

    Article  CAS  PubMed  Google Scholar 

  40. Liggett, W. H. Jr & Sidransky, D. Role of the p16 tumor suppressor gene in cancer. J. Clin. Oncol. 16, 1197–1206 (1998).

    Article  CAS  PubMed  Google Scholar 

  41. Armstrong, A. A. et al. Epstein–Barr virus and Hodgkin's disease: further evidence for the three disease hypothesis. Leukemia 12, 1272–1276 (1998).

    Article  CAS  PubMed  Google Scholar 

  42. Munoz, N. et al. Risk factors for HPV DNA detection in middle-aged women. Sex Transm. Dis. 23, 504–510 (1996).

    Article  CAS  PubMed  Google Scholar 

  43. Fukayama, M., Chong, J. M. & Uozaki, H. Pathology and molecular pathology of Epstein–Barr virus-associated gastric carcinoma. Curr. Top. Microbiol. Immunol. 258, 91–102 (2001).

    CAS  PubMed  Google Scholar 

  44. Young, L. S. & Murray, P. G. Epstein–Barr virus and oncogenesis: from latent genes to tumours. Oncogene 22, 5108–5121 (2003).

    Article  CAS  PubMed  Google Scholar 

  45. Chong, J. M. et al. Global and non-random CpG-island methylation in gastric carcinoma associated with Epstein–Barr virus. Cancer Sci. 94, 76–80 (2003).

    Article  CAS  PubMed  Google Scholar 

  46. Vo, Q. N. et al. Epstein–Barr virus in gastric adenocarcinomas: association with ethnicity and CDKN2A promoter methylation. J. Clin. Pathol. 55, 669–675 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Mochizuki, S. et al. Homozygous deletion of the p16/MTS-1/CDKN2 gene in malignant gliomas is infrequent among Japanese patients. Int. J. Oncol. 15, 983–989 (1999).

    CAS  PubMed  Google Scholar 

  48. Prives, C. & Hall, P. A. The p53 pathway. J. Pathol. 187, 112–126 (1999).

    Article  CAS  PubMed  Google Scholar 

  49. Oren, M. et al. Regulation of p53: intricate loops and delicate balances. Biochem. Pharmacol. 64, 865–871 (2002).

    Article  CAS  PubMed  Google Scholar 

  50. Olivier, M. et al. The IARC TP53 database: new online mutation analysis and recommendations to users. Hum. Mutat. 19, 607–614 (2002).

    Article  CAS  PubMed  Google Scholar 

  51. Chen, P. et al. Ethnicity delineates different genetic pathways in malignant glioma. Cancer Res. 61, 3949–3954 (2001).

    CAS  PubMed  Google Scholar 

  52. Burton, E. C. et al. Aberrant p53, mdm2, and proliferation differ in glioblastomas from long-term compared with typical survivors. Clin. Cancer Res. 8, 180–187 (2002).

    CAS  PubMed  Google Scholar 

  53. Hill, K. A. & Sommer, S. S. p53 as a mutagen test in breast cancer. Environ. Mol. Mutagen. 39, 216–227 (2002).

    Article  CAS  PubMed  Google Scholar 

  54. Middleton, L. P., Chen, V., Perkins, G. H., Pinn, V. & Page, D. Histopathology of breast cancer among African-American women. Cancer 97, 253–257 (2003).

    Article  PubMed  Google Scholar 

  55. Rose, D. P. & Royak-Schaler, R. Tumor biology and prognosis in black breast cancer patients: a review. Cancer Detect. Prev. 25, 16–31 (2001).

    CAS  PubMed  Google Scholar 

  56. Li, C. I., Malone, K. E. & Daling, J. R. Differences in breast cancer hormone receptor status and histology by race and ethnicity among women 50 years of age and older. Cancer Epidemiol. Biomarkers Prev. 11, 601–607 (2002).

    PubMed  Google Scholar 

  57. Paschke, T. Analysis of different versions of the IARC p53 database with respect to G→T transversion mutation frequencies and mutation hotspots in lung cancer of smokers and non-smokers. Mutagenesis 15, 457–458 (2000).

    Article  CAS  PubMed  Google Scholar 

  58. Pernick, N. L. et al. Clinicopathologic analysis of pancreatic adenocarcinoma in African Americans and Caucasians. Pancreas 26, 28–32 (2003).

    Article  PubMed  Google Scholar 

  59. Hunt, J. D. et al. Differences in KRAS mutation spectrum in lung cancer cases between African Americans and Caucasians after occupational or environmental exposure to known carcinogens. Cancer Epidemiol. Biomarkers Prev. 11, 1405–1412 (2002).

    CAS  PubMed  Google Scholar 

  60. Piyathilake, C. J. et al. Race- and age-dependent alterations in global methylation of DNA in squamous cell carcinoma of the lung (United States). Cancer Causes Control 14, 37–42 (2003).

    Article  CAS  PubMed  Google Scholar 

  61. Ashktorab, H. et al. High incidence of microsatellite instability in colorectal cancer from African Americans. Clin. Cancer Res. 9, 1112–1117 (2003).

    CAS  PubMed  Google Scholar 

  62. Carroll, W. L. Race and outcome in childhood acute lymphoblastic leukemia. JAMA 290, 2061–2063 (2003).

    Article  CAS  PubMed  Google Scholar 

  63. Bhatia, S. et al. Racial and ethnic differences in survival of children with acute lymphoblastic leukemia. Blood 100, 1957–1964 (2002).

    Article  CAS  PubMed  Google Scholar 

  64. Kadan-Lottick, N. S., Ness, K. K., Bhatia, S. & Gurney, J. G. Survival variability by race and ethnicity in childhood acute lymphoblastic leukemia. JAMA 290, 2008–2014 (2003).

    Article  CAS  PubMed  Google Scholar 

  65. Pui, C. H. et al. Results of therapy for acute lymphoblastic leukemia in black and white children. JAMA 290, 2001–2007 (2003).

    Article  CAS  PubMed  Google Scholar 

  66. Stephens, J. C. et al. Haplotype variation and linkage disequilibrium in 313 human genes. Science 293, 489–493 (2001).

    Article  CAS  PubMed  Google Scholar 

  67. Lin, S. S. & Kelsey, J. L. Use of race and ethnicity in epidemiologic research: concepts, methodological issues, and suggestions for research. Epidemiol. Rev. 22, 187–202 (2000).

    Article  CAS  PubMed  Google Scholar 

  68. Wilson, J. F. et al. Population genetic structure of variable drug response. Nature Genet. 29, 265–269 (2001).

    Article  CAS  PubMed  Google Scholar 

  69. Desai, A. A., Innocenti, F. & Ratain, M. J. Pharmacogenomics: road to anticancer therapeutics nirvana? Oncogene 22, 6621–6628 (2003).

    Article  CAS  PubMed  Google Scholar 

  70. Devlin, B., Roeder, K. & Wasserman, L. Genomic control, a new approach to genetic-based association studies. Theor. Popul. Biol. 60, 155–166 (2001).

    Article  CAS  PubMed  Google Scholar 

  71. Kim, D. H. et al. p16INK4a and histology-specific methylation of CpG islands by exposure to tobacco smoke in non-small cell lung cancer. Cancer Res. 61, 3419–3424 (2001).

    CAS  PubMed  Google Scholar 

  72. Soria, J. C. et al. Aberrant promoter methylation of multiple genes in bronchial brush samples from former cigarette smokers. Cancer Res. 62, 351–355 (2002).

    CAS  PubMed  Google Scholar 

  73. Toyooka, S. et al. Smoke exposure, histologic type and geography-related differences in the methylation profiles of non-small cell lung cancer. Int. J. Cancer 103, 153–160 (2003).

    Article  CAS  PubMed  Google Scholar 

  74. Yanagawa, N. et al. Frequent epigenetic silencing of the p16 gene in non-small cell lung cancers of tobacco smokers. Jpn. J. Cancer Res. 93, 1107–1113 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Kersting, M. et al. Differential frequencies of p16INK4a promoter hypermethylation, p53 mutation, and K-ras mutation in exfoliative material mark the development of lung cancer in symptomatic chronic smokers. J. Clin. Oncol. 18, 3221–3229 (2000).

    Article  CAS  PubMed  Google Scholar 

  76. Hasegawa, M. et al. Patterns of gene promoter methylation in squamous cell cancer of the head and neck. Oncogene 21, 4231–4236 (2002).

    Article  CAS  PubMed  Google Scholar 

  77. Gasco, M. et al. Epigenetic inactivation of 14-3-3 σ in oral carcinoma: association with p16INK4a silencing and human papillomavirus negativity. Cancer Res. 62, 2072–2076 (2002).

    CAS  PubMed  Google Scholar 

  78. Osawa, T. et al. Reduced expression and promoter methylation of p16 gene in Epstein–Barr virus-associated gastric carcinoma. Jpn. J. Cancer Res. 93, 1195–1200 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Tong, J. H. et al. Quantitative Epstein–Barr virus DNA analysis and detection of gene promoter hypermethylation in nasopharyngeal (NP) brushing samples from patients with NP carcinoma. Clin. Cancer Res. 8, 2612–2619 (2002).

    CAS  PubMed  Google Scholar 

  80. Yang, J. M. et al. Effect of HCV infection on expression of several cancer-associated gene products in HCC. World J. Gastroenterol. 5, 25–27 (1999).

    Article  PubMed  PubMed Central  Google Scholar 

  81. Shim, Y. H., Yoon, G. S., Choi, H. J., Chung, Y. H. & Yu, E. p16 hypermethylation in the early stage of hepatitis B virus-associated hepatocarcinogenesis. Cancer Lett. 190, 213–219 (2003).

    Article  CAS  PubMed  Google Scholar 

  82. Platt, G., Carbone, A. & Mittnacht, S. p16INK4a loss and sensitivity in KSHV associated primary effusion lymphoma. Oncogene 21, 1823–1831 (2002).

    Article  CAS  PubMed  Google Scholar 

  83. Fang, J. Y., Mikovits, J. A., Bagni, R., Petrow-Sadowski, C. L. & Ruscetti, F. W. Infection of lymphoid cells by integration-defective human immunodeficiency virus type 1 increases de novo methylation. J. Virol. 75, 9753–9761 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

J.K.W. is supported by the National Institutes of Environmental Health Sciences.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The author declares no competing financial interests.

Related links

Related links

DATABASES

Cancer.gov

acute lymphoblastic leukaemia

brain cancer

breast cancer

colorectal cancer

gastric cancer

liver cancer

lung cancer

ovarian cancer

pancreatic cancer

prostate cancer

LocusLink

APC

BRCA1

BRCA2

CDKN2A

FY

GATA1

KRAS

Rb

TP53

β-catenin

FURTHER INFORMATION

International Agency for Research on Cancer TP53 mutation database

The Surveillance Epidemiology and End Results (SEER)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wiencke, J. Impact of race/ethnicity on molecular pathways in human cancer. Nat Rev Cancer 4, 79–84 (2004). https://doi.org/10.1038/nrc1257

Download citation

  • Issue date:

  • DOI: https://doi.org/10.1038/nrc1257

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing