Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Nuclear microenvironments in biological control and cancer

Key Points

  • The biological control of gene expression requires the temporal and spatial integration of dynamic processes. These include nuclear import, intranuclear targeting and chromatin remodelling that facilitate the organization and assembly of gene-regulatory machinery in microenvironments within the cell nucleus.

  • Combinatorial assembly and organization of nuclear microenvironments is mediated by scaffolding proteins at several sites in target gene promoters as well as in subnuclear domains. Such focal compartmentalization of regulatory machinery in nuclear microenvironments might regulate the dynamic formation and activity of physiologically responsive regulatory networks and provide threshold concentrations of factors that govern the extent to which genes are activated, suppressed or coordinately controlled.

  • Targeting of scaffolding proteins to specific sites within the nucleus supports their involvement in biological control and reflects the potential influence of cancer-related alterations on gene expression.

  • Solid tumours, leukaemias and lymphomas show striking alterations in nuclear morphology as well as in the architectural organization of genes, transcripts and regulatory complexes within the nucleus. Examples of altered nuclear microenvironments include promyelocytic leukaemia (PML) bodies and acute myeloid leukaemia (AML) foci in leukaemias, the nucleolus in some solid tumours and extensive chromosomal rearrangements.

  • Imaging principal nuclear compartments that are frequently rearranged in cancer combined with genomic and proteomic analyses can improve the biological and clinical relevance of regulatory signatures produced as a result of high throughput gene profiling of tumours.

  • Mechanistic insights into the temporal and spatial organization of the nuclear machinery involved in gene expression, which is compromised in tumours, provide a novel platform for diagnosis and therapy.

Abstract

Nucleic acids and regulatory proteins are compartmentalized in microenvironments within the nucleus. This subnuclear organization may support convergence and the integration of physiological signals for the combinatorial control of gene expression, DNA replication and repair. Nuclear organization is modified in many cancers. There are cancer-related changes in the composition, organization and assembly of regulatory complexes at intranuclear sites. Mechanistic insights into the temporal and spatial organization of machinery for gene expression within the nucleus, which is compromised in tumours, provide a novel platform for diagnosis and therapy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Perturbations in nuclear microenvironments in cancer.
Figure 2: Several trafficking signals localize regulatory proteins to the right place at the right time.

Similar content being viewed by others

References

  1. Drobic, B., Dunn, K. L., Espino, P. S. & Davie, J. R. Abnormalities of chromatin in tumor cells. EXS 96, 25–47 (2006).

    CAS  Google Scholar 

  2. Kopp, K. & Huang, S. Perinucleolar compartment and transformation. J. Cell Biochem. 95, 217–225 (2005).

    Article  CAS  PubMed  Google Scholar 

  3. Zink, D., Fischer, A. H. & Nickerson, J. A. Nuclear structure in cancer cells. Nature Rev. Cancer 4, 677–687 (2004).

    Article  CAS  Google Scholar 

  4. Leonhardt, H. & Cardoso, M. C. DNA methylation, nuclear structure, gene expression and cancer. J. Cell Biochem. Suppl. 35, 78–83 (2000).

    Article  PubMed  Google Scholar 

  5. Singh, H., Sekinger, E. A. & Gross, D. S. Chromatin and cancer: causes and consequences. J. Cell Biochem. Suppl. 35, 61–68 (2000).

    Article  PubMed  Google Scholar 

  6. Stein, G. S., Montecino, M., van Wijnen, A. J., Stein, J. L. & Lian, J. B. Nuclear structure- gene expression interrelationships: implications for aberrant gene expression in cancer. Cancer Res. 60, 2067–2076 (2000).

    CAS  PubMed  Google Scholar 

  7. Konety, B. R. & Getzenberg, R. H. Nuclear structural proteins as biomarkers of cancer. J. Cell Biochem. Suppl. 32–33, 183–191 (1999).

    Article  Google Scholar 

  8. Bissell, M. J. et al. Tissue structure, nuclear organization, and gene expression in normal and malignant breast. Cancer Res. 59, 1757–1763s (1999).

    CAS  PubMed  Google Scholar 

  9. Nicolini, C. Nuclear structure and higher order gene structure: their role in the control of chemically-induced neoplastic transformation. Toxicol. Pathol. 12, 149–154 (1984).

    Article  CAS  PubMed  Google Scholar 

  10. BENSON, E. S. Leukemia and the Philadelphia chromosome. Postgrad. Med. 30, A22–A28 (1961).

    Article  CAS  PubMed  Google Scholar 

  11. Gauwerky, C. E. & Croce, C. M. Chromosomal translocations in leukaemia. Semin. Cancer Biol. 4, 333–340 (1993).

    CAS  PubMed  Google Scholar 

  12. Cremer, T. et al. Chromosome territories-a functional nuclear landscape. Curr. Opin. Cell Biol. 18, 307–316 (2006).

    Article  CAS  PubMed  Google Scholar 

  13. Roix, J. J., McQueen, P. G., Munson, P. J., Parada, L. A. & Misteli, T. Spatial proximity of translocation-prone gene loci in human lymphomas. Nature Genet. 34, 287–291 (2003). Using immunofluorescence microscopy, the authors show that the proximity of chromosomal territories carrying translocation-prone gene loci perhaps contributes to chromosomal translocations.

    Article  CAS  PubMed  Google Scholar 

  14. Parada, L. & Misteli, T. Chromosome positioning in the interphase nucleus. Trends Cell Biol. 12, 425–432 (2002).

    Article  CAS  PubMed  Google Scholar 

  15. Carrozza, M. J., Utley, R. T., Workman, J. L. & Cote, J. The diverse functions of histone acetyltransferase complexes. Trends Genet. 19, 321–329 (2003).

    Article  CAS  PubMed  Google Scholar 

  16. Coffey, D. S., Getzenberg, R. H. & DeWeese, T. L. Hyperthermic biology and cancer therapies: a hypothesis for the 'Lance Armstrong effect'. JAMA 296, 445–448 (2006).

    Article  CAS  PubMed  Google Scholar 

  17. Zaidi, S. K. et al. The dynamic organization of gene-regulatory machinery in nuclear microenvironments. EMBO Rep. 6, 128–133 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. DeFranco, D. B. Navigating steroid hormone receptors through the nuclear compartment. Mol. Endocrinol. 16, 1449–1455 (2002).

    Article  CAS  PubMed  Google Scholar 

  19. Isogai, Y. & Tjian, R. Targeting genes and transcription factors to segregated nuclear compartments. Curr. Opin. Cell Biol. 15, 296–303 (2003).

    Article  CAS  PubMed  Google Scholar 

  20. Spector, D. L. Nuclear domains. J. Cell Sci. 114, 2891–2893 (2001).

    CAS  PubMed  Google Scholar 

  21. Kosak, S. T. & Groudine, M. Gene order and dynamic domains. Science 306, 644–647 (2004).

    Article  CAS  PubMed  Google Scholar 

  22. Taatjes, D. J., Marr, M. T. & Tjian, R. Regulatory diversity among metazoan co-activator complexes. Nature Rev. Mol. Cell Biol. 5, 403–410 (2004).

    Article  CAS  Google Scholar 

  23. Misteli, T. Spatial positioning; a new dimension in genome function. Cell 119, 153–156 (2004).

    Article  CAS  PubMed  Google Scholar 

  24. Handwerger, K. E. & Gall, J. G. Subnuclear organelles: new insights into form and function. Trends Cell Biol. 16, 19–26 (2006).

    Article  CAS  PubMed  Google Scholar 

  25. Fischer, A. H., Bardarov, S. Jr & Jiang, Z. Molecular aspects of diagnostic nucleolar and nuclear envelope changes in prostate cancer. J. Cell Biochem. 91, 170–184 (2004).

    Article  CAS  PubMed  Google Scholar 

  26. Rowley, J. D. The role of chromosome translocations in leukemogenesis. Semin. Hematol. 36, 59–72 (1999).

    CAS  PubMed  Google Scholar 

  27. Stein, G. S. et al. Functional architecture of the nucleus: organizing the regulatory machinery for gene expression, replication and repair. Trends Cell Biol. 13, 584–592 (2003).

    Article  CAS  PubMed  Google Scholar 

  28. Verschure, P. J., van Der Kraan, I., Manders, E. M. & van Driel, R. Spatial relationship between transcription sites and chromosome territories. J. Cell Biol. 147, 13–24 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Htun, H., Barsony, J., Renyi, I., Gould, D. L. & Hager, G. L. Visualization of glucocorticoid receptor translocation and intranuclear organization in living cells with a green fluorescent protein chimera. Proc. Natl Acad. Sci. USA 93, 4845–4850 (1996). This study shows the in vivo dynamics of a steroid hormone receptor in response to ligand activation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Leonhardt, H., Rahn, H. P. & Cardoso, M. C. Intranuclear targeting of DNA replication factors. J. Cell Biochem. Suppl. 30–31, 243–249 (1998).

    Article  PubMed  Google Scholar 

  31. Wei, X. et al. Segregation of transcription and replication sites into higher order domains. Science 281, 1502–1505 (1998). This study shows that individual sites of DNA replication and transcription of mammalian nuclei segregate into distinct sets of higher order domains with a distinct network-like appearance. These data support a dynamic mosaic model for the higher order arrangement of genomic function inside cell nuclei.

    Article  CAS  PubMed  Google Scholar 

  32. Zeng, C. et al. Identification of a nuclear matrix targeting signal in the leukemia and bone-related AML/CBFα transcription factors. Proc. Natl Acad. Sci. USA 94, 6746–6751 (1997). The authors identify the first nuclear matrix-targeting signal in a transcription factor. This is the first study to demonstrate a mechanism to target regulatory proteins to specific sites within the mammalian nucleus.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Zaidi, S. K. et al. Tyrosine phosphorylation controls Runx2-mediated subnuclear targeting of YAP to repress transcription. EMBO J. 23, 790–799 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Nye, A. C. et al. Alteration of large-scale chromatin structure by estrogen receptor. Mol. Cell Biol. 22, 3437–3449 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Stenoien, D. L. et al. Ligand-mediated assembly and real-time cellular dynamics of estrogen receptor α-coactivator complexes in living cells. Mol. Cell Biol. 21, 4404–4412 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Young, D. W. et al. Quantitative signature for architectural organization of regulatory factors using intranuclear informatics. J. Cell Sci. 117, 4889–4896 (2004). This study describes the development of a mathematical algorithm, designated intranuclear informatics, to quantitatively assess subnuclear localization of regulatory proteins.

    Article  CAS  PubMed  Google Scholar 

  37. Weber, J. D., Taylor, L. J., Roussel, M. F., Sherr, C. J. & Bar-Sagi, D. Nucleolar Arf sequesters Mdm2 and activates p53. Nature Cell Biol. 1, 20–26 (1999). The authors show that ARF binds to MDM2 and sequesters it into the nucleolus, thereby preventing negative-feedback regulation of p53 by MDM2 and leading to the activation of p53 in the nucleoplasm.

    Article  CAS  PubMed  Google Scholar 

  38. Oudes, A. J. et al. Transcriptomes of human prostate cells. BMC Genomics 7, 92 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Chene, P. Inhibiting the p53-MDM2 interaction: an important target for cancer therapy. Nature Rev. Cancer 3, 102–109 (2003).

    Article  CAS  Google Scholar 

  40. Wsierska-Gadek, J. & Horky, M. How the nucleolar sequestration of p53 protein or its interplayers contributes to its (re)-activation. Ann. N. Y. Acad. Sci. 1010, 266–272 (2003).

    Article  PubMed  CAS  Google Scholar 

  41. Tu, X. et al. Nuclear translocation of insulin receptor substrate-1 by oncogenes and Igf-I. Effect on ribosomal RNA synthesis. J. Biol. Chem. 277, 44357–44365 (2002).

    Article  CAS  PubMed  Google Scholar 

  42. Dang, C. V. & Lee, W. M. Nuclear and nucleolar targeting sequences of c-erb-A, c-myb, N-myc, p53, HSP70, and HIV tat proteins. J. Biol. Chem. 264, 18019–18023 (1989).

    CAS  PubMed  Google Scholar 

  43. Grandori, C. et al. c-Myc binds to human ribosomal DNA and stimulates transcription of rRNA genes by RNA polymerase I. Nature Cell Biol. 7, 311–318 (2005). References 43 and 44 show the upregulation of ribosomal RNA genes by the MYC oncogene, thus providing mechanistic links between tumorigenesis and protein synthesis.

    Article  CAS  PubMed  Google Scholar 

  44. Arabi, A. et al. c-Myc associates with ribosomal DNA and activates RNA polymerase I transcription. Nature Cell Biol. 7, 303–310 (2005).

    Article  CAS  PubMed  Google Scholar 

  45. Grisendi, S. et al. Role of nucleophosmin in embryonic development and tumorigenesis. Nature 437, 147–153 (2005).

    Article  CAS  PubMed  Google Scholar 

  46. Ruggero, D. & Pandolfi, P. P. Does the ribosome translate cancer? Nature Rev. Cancer 3, 179–192 (2003).

    Article  CAS  Google Scholar 

  47. Hernandez-Verdun, D. The nucleolus: a model for the organization of nuclear functions. Histochem. Cell Biol. 126, 135–148 (2006).

    Article  CAS  PubMed  Google Scholar 

  48. Young, D. W. et al. Mitotic occupancy and lineage-specific transcriptional control of rRNA genes by Runx2. Nature 445, 442–446 (2007). This article reports the regulation of ribosomal RNA genes by a transcription factor required for lineage commitment, thus providing a mechanistic link between the regulation of cell fate, growth control and phenotype.

    Article  CAS  PubMed  Google Scholar 

  49. Galindo, M. et al. The bone-specific expression of RUNX2 oscillates during the cell cycle to support a G1 related anti-proliferative function in osteoblasts. J. Biol. Chem. 280, 20274–20285 (2005).

    Article  CAS  PubMed  Google Scholar 

  50. Pratap, J. et al. Cell growth regulatory role of Runx2 during proliferative expansion of pre-osteoblasts. J. Bone Miner. Res. 17, (Suppl. 1), S151 (2002).

    Google Scholar 

  51. Strom, D. K. et al. Expression of the AML-1 oncogene shortens the G(1) phase of the cell cycle. J. Biol. Chem. 275, 3438–3445 (2000).

    Article  CAS  PubMed  Google Scholar 

  52. Speck, N. A. & Gilliland, D. G. Core-binding factors in haematopoiesis and leukaemia. Nature Rev. Cancer 2, 502–513 (2002).

    Article  CAS  Google Scholar 

  53. Barseguian, K. et al. Multiple subnuclear targeting signals of the leukemia-related AML1/ETO and ETO repressor proteins. Proc. Natl Acad. Sci. USA 99, 15434–15439 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. McNeil, S. et al. The t(8;21) chromosomal translocation in acute myelogenous leukemia modifies intranuclear targeting of the AML1/CBFα2 transcription factor. Proc. Natl Acad. Sci. USA 96, 14882–14887 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Barnes, G. L. et al. Fidelity of Runx2 activity in breast cancer cells is required for the generation of metastases associated osteolytic disease. Cancer Res. 64, 4506–4513 (2004).

    Article  CAS  PubMed  Google Scholar 

  56. Javed, A. et al. Impaired intranuclear trafficking of Runx2 (AML3/CBFA1) transcription factors in breast cancer cells inhibits osteolysis in vivo. Proc. Natl Acad. Sci. USA 102, 1454–1459 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Vradii, D. et al. A point mutation in AML1 disrupts subnuclear targeting, prevents myeloid differentiation, and results in a transformation-like phenotype. Proc. Natl Acad. Sci USA 102, 7174–7179 (2005). References 56 and 57 show that the impaired subnuclear targeting of RUNX1 or RUNX2 transcription factors results in a differentiation block and transformation-like phenotype in myeloid progenitors or the inhibition of osteolytic activity of breast cancer cells, respectively.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Kamath, R. V. et al. Perinucleolar compartment prevalence has an independent prognostic value for breast cancer. Cancer Res. 65, 246–253 (2005).

    CAS  PubMed  Google Scholar 

  59. Huang, S., Deerinck, T. J., Ellisman, M. H. & Spector, D. L. The dynamic organization of the perinucleolar compartment in the cell nucleus. J. Cell Biol. 137, 965–974 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Branco, M. R. & Pombo, A. Chromosome organization: new facts, new models. Trends Cell Biol. (2006).

  61. Branco, M. R. & Pombo, A. Intermingling of chromosome territories in interphase suggests role in translocations and transcription-dependent associations. PLoS. Biol. 4, e138 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Sadoni, N., Cardoso, M. C., Stelzer, E. H., Leonhardt, H. & Zink, D. Stable chromosomal units determine the spatial and temporal organization of DNA replication. J. Cell Sci. 117, 5353–5365 (2004).

    Article  CAS  PubMed  Google Scholar 

  63. Gu, Y. et al. The t(4;11) chromosome translocation of human acute leukemias fuses the ALL-1 gene, related to Drosophila trithorax, to the AF-4 gene. Cell 71, 701–708 (1992). This article reports cloning of the t(4;11) involving the ALL1 and AF4 genes.

    Article  CAS  PubMed  Google Scholar 

  64. Lee, G. R., Spilianakis, C. G. & Flavell, R. A. Hypersensitive site 7 of the TH2 locus control region is essential for expressing TH2 cytokine genes and for long-range intrachromosomal interactions. Nature Immunol. 6, 42–48 (2005).

    Article  CAS  Google Scholar 

  65. Spilianakis, C. G. & Flavell, R. A. Long-range intrachromosomal interactions in the T helper type 2 cytokine locus. Nature Immunol. 5, 1017–1027 (2004).

    Article  CAS  Google Scholar 

  66. Spilianakis, C. G., Lalioti, M. D., Town, T., Lee, G. R. & Flavell, R. A. Interchromosomal associations between alternatively expressed loci. Nature 435, 637–645 (2005). References 64–66 show that inter- as well as intra-chromosomal interactions between gene loci contribute to gene regulation and cell phenotype determination.

    Article  CAS  PubMed  Google Scholar 

  67. Yamagata, T., Maki, K. & Mitani, K. Runx1/AML1 in normal and abnormal hematopoiesis. Int. J. Hematol. 82, 1–8 (2005).

    Article  CAS  PubMed  Google Scholar 

  68. Heisterkamp, N., Stam, K., Groffen, J., de, K. A. & Grosveld, G. Structural organization of the bcr gene and its role in the Ph' translocation. Nature 315, 758–761 (1985).

    Article  CAS  PubMed  Google Scholar 

  69. McKeithan, T. W. et al. Molecular cloning of the breakpoint junction of a human chromosomal 8;14 translocation involving the T-cell receptor alpha-chain gene and sequences on the 3' side of MYC. Proc. Natl Acad. Sci. USA 83, 6636–6640 (1986).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Salomoni, P., Guo, A. & Pandolfi, P. P. The role of PML in tumour suppression. Cell 108, 165–170 (2002).

    Article  CAS  PubMed  Google Scholar 

  71. Negorev, D. & Maul, G. G. Cellular proteins localized at and interacting within ND10/PML nuclear bodies/PODs suggest functions of a nuclear depot. Oncogene 20, 7234–7242 (2001).

    Article  CAS  PubMed  Google Scholar 

  72. Takahashi, Y., Lallemand-Breitenbach, V., Zhu, J. & de, T. H. PML nuclear bodies and apoptosis. Oncogene 23, 2819–2824 (2004).

    Article  CAS  PubMed  Google Scholar 

  73. Kakizuka, A. et al. Chromosomal translocation t(15;17) in human acute promyelocytic leukemia fuses RARα with a novel putative transcription factor, PML. Cell 66, 663–674 (1991).

    Article  CAS  PubMed  Google Scholar 

  74. de The, H. et al. The PML-RAR α fusion mRNA generated by the t(15;17) translocation in acute promyelocytic leukemia encodes a functionally altered RAR. Cell 66, 675–684 (1991). References 73 and 74 report the cloning of the t(15;17) translocation involving PML and RAR genes.

    Article  CAS  PubMed  Google Scholar 

  75. Bernardi, R. & Pandolfi, P. P. Role of PML and the PML-nuclear body in the control of programmed cell death. Oncogene 22, 9048–9057 (2003).

    Article  CAS  PubMed  Google Scholar 

  76. Dyck, J. A., Warrell, R. P. Jr, Evans, R. M. & Miller, W. H. Jr. Rapid diagnosis of acute promyelocytic leukemia by immunohistochemical localization of PML/RAR-α protein. Blood 86, 862–867 (1995).

    CAS  PubMed  Google Scholar 

  77. Weis, K. et al. Retinoic acid regulates aberrant nuclear localization of PML-RAR α in acute promyelocytic leukemia cells. Cell 76, 345–356 (1994). References 76 and 77 describe the use of mislocalized PML–RAR fusion protein in patients with acute promyelocytic leukaemia for diagnostic purposes, and the use of retinoic acid as a therapeutic agent that results in the restoration of PML subnuclear localization.

    Article  CAS  PubMed  Google Scholar 

  78. Jing, Y. & Waxman, S. The design of selective and non-selective combination therapy for acute promyelocytic leukemia. Curr. Top. Microbiol. Immunol. 313, 245–269 (2007).

    CAS  PubMed  Google Scholar 

  79. Matunis, M. J., Zhang, X. D. & Ellis, N. A. SUMO: the glue that binds. Dev. Cell 11, 596–597 (2006).

    Article  CAS  PubMed  Google Scholar 

  80. Voss, T. C., Demarco, I. A., Booker, C. F. & Day, R. N. Functional interactions with Pit-1 reorganize co-repressor complexes in the living cell nucleus. J. Cell Sci. 118, 3277–3288 (2005).

    Article  CAS  PubMed  Google Scholar 

  81. Gostissa, M., Hofmann, T. G., Will, H. & Del, S. G. Regulation of p53 functions: let's meet at the nuclear bodies. Curr. Opin. Cell Biol. 15, 351–357 (2003).

    Article  CAS  PubMed  Google Scholar 

  82. Alao, J. P. et al. The cyclin D1 proto-oncogene is sequestered in the cytoplasm of mammalian cancer cell lines. Mol. Cancer 5, 7 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  83. Henderson, B. Nuclear transport as a target for cancer therapies. Drug Discov. Today 8, 249 (2003).

    Article  PubMed  Google Scholar 

  84. Yashiroda, Y. & Yoshida, M. Nucleo-cytoplasmic transport of proteins as a target for therapeutic drugs. Curr. Med. Chem. 10, 741–748 (2003).

    Article  CAS  PubMed  Google Scholar 

  85. Kau, T. R., Way, J. C. & Silver, P. A. Nuclear transport and cancer: from mechanism to intervention. Nature Rev. Cancer 4, 106–117 (2004).

    Article  CAS  Google Scholar 

  86. Hu, M. C. et al. IκB kinase promotes tumorigenesis through inhibition of forkhead FOXO3a. Cell 117, 225–237 (2004).

    Article  CAS  PubMed  Google Scholar 

  87. Henderson, B. R. Nuclear-cytoplasmic shuttling of APC regulates β-catenin subcellular localization and turnover. Nature Cell Biol. 2, 653–660 (2000).

    Article  CAS  PubMed  Google Scholar 

  88. Krakowski, A. R., Laboureau, J., Mauviel, A., Bissell, M. J. & Luo, K. Cytoplasmic SnoN in normal tissues and nonmalignant cells antagonizes TGF-β signaling by sequestration of the Smad proteins. Proc. Natl Acad. Sci. USA 102, 12437–12442 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Ito, K. et al. RUNX3, a novel tumor suppressor, is frequently inactivated in gastric cancer by protein mislocalization. Cancer Res. 65, 7743–7750 (2005).

    Article  CAS  PubMed  Google Scholar 

  90. Vigneri, P. & Wang, J. Y. Induction of apoptosis in chronic myelogenous leukemia cells through nuclear entrapment of BCR-ABL tyrosine kinase. Nature Med. 7, 228–234 (2001). This is the first study to show that the specific nuclear entrapment of BCR-AML tyrosine kinase can be used to target leukaemic cells in patients with chronic myeloid leukaemia.

    Article  CAS  PubMed  Google Scholar 

  91. Nakamura, T. et al. ALL-1 is a histone methyltransferase that assembles a supercomplex of proteins involved in transcriptional regulation. Mol. Cell 10, 1119–1128 (2002).

    Article  CAS  PubMed  Google Scholar 

  92. Lian, J. B. et al. Regulatory controls for osteoblast growth and differentiation: role of Runx/Cbfa/AML factors. Crit. Rev. Eukaryot. Gene Expr. 14, 1–41 (2004).

    Article  CAS  PubMed  Google Scholar 

  93. Monteiro, A. N. & Birge, R. B. A nuclear function for the tumor suppressor BRCA1. Histol. Histopathol. 15, 299–307 (2000).

    CAS  PubMed  Google Scholar 

  94. Warbrick, E. The puzzle of PCNA's many partners. BioEssays 22, 997–1006 (2000).

    Article  CAS  PubMed  Google Scholar 

  95. Cai, S., Lee, C. C. & Kohwi-Shigematsu, T. SATB1 packages densely looped, transcriptionally active chromatin for coordinated expression of cytokine genes. Nature Genet. 38, 1278–1288 (2006).

    Article  CAS  PubMed  Google Scholar 

  96. Cai, S., Han, H. J. & Kohwi-Shigematsu, T. Tissue-specific nuclear architecture and gene expression regulated by SATB1. Nature Genet. 34, 42–51 (2003).

    Article  CAS  PubMed  Google Scholar 

  97. Yasui, D., Miyano, M., Cai, S., Varga-Weisz, P. & Kohwi-Shigematsu, T. SATB1 targets chromatin remodelling to regulate genes over long distances. Nature 419, 641–645 (2002).

    Article  CAS  PubMed  Google Scholar 

  98. Dickinson, L. A., Joh, T., Kohwi, Y. & Kohwi-Shigematsu, T. A tissue-specific MAR/SAR DNA-binding protein with unusual binding site recognition. Cell 70, 631–645 (1992).

    Article  CAS  PubMed  Google Scholar 

  99. Stenoien, D. L. et al. Subnuclear trafficking of estrogen receptor-α and steroid receptor coactivator-1. Mol. Endocrinol. 14, 518–534 (2000).

    CAS  PubMed  Google Scholar 

  100. DeFranco, D. B. & Guerrero, J. Nuclear matrix targeting of steroid receptors: specific signal sequences and acceptor proteins. Crit. Rev. Eukaryot. Gene Expr. 10, 39–44 (2000).

    Article  CAS  PubMed  Google Scholar 

  101. Mancini, M. G., Liu, B., Sharp, Z. D. & Mancini, M. A. Subnuclear partitioning and functional regulation of the Pit-1 transcription factor. J. Cell Biochem. 72, 322–338 (1999).

    Article  CAS  PubMed  Google Scholar 

  102. Tang, Y. et al. The DNA-binding and τ2 transactivation domains of the rat glucocorticoid receptor constitute a nuclear matrix targeting signal. Mol. Endocrinol. 12, 1420–1431 (1998).

    CAS  PubMed  Google Scholar 

  103. McNeil, S. et al. Targeting of the YY1 transcription factor to the nucleolus and the nuclear matrix in situ: the C-terminus is a principal determinant for nuclear trafficking. J. Cell. Biochem. 68, 500–510 (1998).

    Article  CAS  PubMed  Google Scholar 

  104. Zaidi, S. K. et al. A specific targeting signal directs Runx2/Cbfa1 to subnuclear domains and contributes to transactivation of the osteocalcin gene. J. Cell Sci. 114, 3093–3102 (2001).

    CAS  PubMed  Google Scholar 

  105. Seo, J., Lozano, M. M. & Dudley, J. P. Nuclear matrix binding regulates SATB1-mediated transcriptional repression. J. Biol. Chem. 280, 24600–24609 (2005).

    Article  CAS  PubMed  Google Scholar 

  106. Erfurth, F., Hemenway, C. S., de Erkenez, A. C. & Domer, P. H. MLL fusion partners AF4 and AF9 interact at subnuclear foci. Leukemia 18, 92–102 (2004).

    Article  CAS  PubMed  Google Scholar 

  107. de la Serna, I., Ohkawa, Y. & Imbalzano, A. N. Chromatin remodelling in mammalian differentiation: lessons from ATP-dependent remodellers. Nature Rev. Genet. 7, 461–473 (2006).

    Article  CAS  PubMed  Google Scholar 

  108. Klose, R. J. & Bird, A. P. Genomic DNA methylation: the mark and its mediators. Trends Biochem. Sci. 31, 89–97 (2006).

    Article  CAS  PubMed  Google Scholar 

  109. Esteller, M. Epigenetics provides a new generation of oncogenes and tumour-suppressor genes. Br. J. Cancer 94, 179–183 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Guidi, C. J., Veal, T. M., Jones, S. N. & Imbalzano, A. N. Transcriptional compensation for loss of an allele of the Ini1 tumor suppressor. J. Biol. Chem. 279, 4180–4185 (2004).

    Article  CAS  PubMed  Google Scholar 

  111. Homma, N. et al. Spreading of methylation within RUNX3 CpG island in gastric cancer. Cancer Sci. 97, 51–56 (2006).

    Article  CAS  PubMed  Google Scholar 

  112. Ushijima, T. Detection and interpretation of altered methylation patterns in cancer cells. Nature Rev. Cancer 5, 223–231 (2005).

    Article  CAS  Google Scholar 

  113. Leone, G., Voso, M. T., Teofili, L. & Lubbert, M. Inhibitors of DNA methylation in the treatment of hematological malignancies and MDS. Clin. Immunol. 109, 89–102 (2003).

    Article  CAS  PubMed  Google Scholar 

  114. Yoo, C. B. & Jones, P. A. Epigenetic therapy of cancer: past, present and future. Nature Rev. Drug Discov. 5, 37–50 (2006).

    Article  CAS  Google Scholar 

  115. Marks, P. A., Richon, V. M., Miller, T. & Kelly, W. K. Histone deacetylase inhibitors. Adv. Cancer Res. 91, 137–168 (2004).

    Article  CAS  PubMed  Google Scholar 

  116. He, S. & Davie, J. R. Sp1 and Sp3 foci distribution throughout mitosis. J. Cell Sci. 119, 1063–1070 (2006).

    Article  CAS  PubMed  Google Scholar 

  117. Zaidi, S. K. et al. Mitotic partitioning and selective reorganization of tissue specific transcription factors in progeny cells. Proc. Natl Acad. Sci. USA 100, 14852–14857 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Young, D. W. et al. Mitotic retention of gene expression patterns by the cell fate determining transcription factor Runx2. Proc. Natl Acad. Sci. USA 104, 3189–3194 (2007). References 117 and 118 show the bookmarking of RNA Pol II genes by a tissue-restricted transcription factor during mitosis. These studies provide mechanistic insights into maintenance of cell phenotype through successive cell divisions.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Shav-Tal, Y., Darzacq, X. & Singer, R. H. Gene expression within a dynamic nuclear landscape. EMBO J. 25, 3469–3479 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Studies reported in this article were in part supported by grants from the US National Institutes of Health. The authors thank B. Bronstein for editorial assistance with the preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gary S. Stein.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

FURTHER INFORMATION

Gary Stein's homepage

Glossary

Nuclear microenvironments

Dynamic, microscopically visible, regulatory sites (domains) within the nucleus that are organized and assembled by scaffolding proteins.

Scaffolding proteins

Nuclear scaffolding proteins are regulatory factors that bind to DNA in a sequence-specific manner, associate with the nuclear matrix and interact with co-activators and co-suppressors to regulate transcription, replication and repair.

Runx

A family of three mammalian Runx transcription factors control three distinct lineage commitments (RUNX1 in haematopoiesis; RUNX2 in osteogenesis; and RUNX3 in neurogenesis and gut development) and regulate cell growth, differentiation and proliferation.

Acrocentric chromosomes

An acrocentric chromosome is one in which the centromere is located very near to one of the ends of the chromosome, thus making the short arm of the chromosome negligible. Human chromosomes 13, 14, 15, 21 and 22 are acrocentric chromosomes and all have genes that encode rRNAs.

TH2 response

A T-helper-2 response involves the production of cytokines, such as IL4, which stimulate antibody production. TH2 cytokines promote secretory immune responses of mucosal surfaces to extracellular pathogens and allergic reactions.

Intranuclear targeting

Directed movement of regulatory proteins within the nucleus to specific nuclear microenvironments.

Nuclear matrix targeting signal

(NMTS) The NMTS is a 30–40 amino acid sequence that directs regulatory proteins to nuclear matrix-associated sites and is unique in structure and sequence.

Nuclear matrix

An architectural network of ribonuclear proteins within the nucleus that is retained following the removal of soluble cytoplasmic and nuclear proteins as well as chromatin.

Intranuclear informatics

A mathematical alogrithm that uses 28 independent parameters to quantitatively assess subnuclear organization of regulatory proteins.

Architectural signature

A quantitative representation of subnuclear organization that is specific for each protein.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zaidi, S., Young, D., Javed, A. et al. Nuclear microenvironments in biological control and cancer. Nat Rev Cancer 7, 454–463 (2007). https://doi.org/10.1038/nrc2149

Download citation

  • Issue date:

  • DOI: https://doi.org/10.1038/nrc2149

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing