Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Notch signalling in solid tumours: a little bit of everything but not all the time

Key Points

  • A causative role for Notch signalling is well established in T cell acute lymphoblastic leukaemias (T-ALLs), which have activating mutations in the Notch genes resulting in a constitutively active pathway. By contrast, solid tumours, which have ample opportunity to activate the pathway, exhibit inappropriate activation by multiple mechanisms, such as overexpression of ligand or loss of negative regulators of the pathway.

  • The role of Notch signalling in solid tumours is highly dependent on the spatial and temporal context of Notch activation, as well as the status of other signalling pathways in the cells.

  • Notch signalling has opposing roles in tumorigenesis depending on the cell type. Opposite interactions of the Notch pathway have been documented with the WNT and p53 pathways. Although synergy with WNT and antagonism of the p53 pathway directs the oncogenic role of Notch, the opposite is seen in the tumour suppressor context.

  • Notch signalling has a major role in the maintenance and progression of tumours by promoting epithelial to mesenchymal transition (EMT) and angiogenesis. It also confers resistance to radiation and chemotherapeutic agents.

  • The knowledge of the extensive crosstalk of the Notch pathway with other pathways such as the epidermal growth factor receptor (EGFR) pathway could prove useful in developing combinatorial cancer therapies.

Abstract

The discovery of Notch in Drosophila melanogaster nearly a century ago opened the door to an ever-widening understanding of cellular processes that are controlled or influenced by Notch signalling. As would be expected with such a pleiotropic pathway, the deregulation of Notch signalling leads to several pathological conditions, including cancer. A role for Notch is well established in haematological malignancies, and more recent studies have provided evidence for the importance of Notch activity in solid tumours. As it is thought to act as an oncogene in some cancers but as a tumour suppressor in others, the role of Notch in solid tumours seems to be highly context dependent.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structural organization and proteolytic processing of the Notch receptor.
Figure 2: Signal transduction from Notch receptors and ligands.
Figure 3: Oncogenic and tumour suppressive interactions of Notch.
Figure 4: Notch-regulated tumour–microenvironment interactions in tumour maintenance and progression.

Similar content being viewed by others

References

  1. Ellisen, L. W. et al. TAN-1, the human homolog of the Drosophila notch gene, is broken by chromosomal translocations in T lymphoblastic neoplasms. Cell 66, 649–661 (1991). NOTCH1 was found to be affected by the chromosomal translocation t(7;9)(q34;q34.3), which was found in several patients with T-ALL. This was the first instance in which NOTCH1 was implicated in human cancer.

    Article  CAS  PubMed  Google Scholar 

  2. Weng, A. P. et al. Activating mutations of NOTCH1 in human T cell acute lymphoblastic leukemia. Science 306, 269–271 (2004). The authors found that more than 50% of human T-ALLs have activating mutations in NOTCH1.

    Article  CAS  PubMed  Google Scholar 

  3. Malecki, M. J. et al. Leukemia-associated mutations within the NOTCH1 heterodimerization domain fall into at least two distinct mechanistic classes. Mol. Cell. Biol. 26, 4642–4651 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Koch, U. & Radtke, F. Notch and cancer: a double-edged sword. Cell. Mol. Life Sci. 64, 2746–2762 (2007).

    Article  CAS  PubMed  Google Scholar 

  5. Hanlon, L. et al. Notch1 functions as a tumor suppressor in a model of K-ras-induced pancreatic ductal adenocarcinoma. Cancer Res. 70, 4280–4286 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Plentz, R. et al. Inhibition of γ-secretase activity inhibits tumor progression in a mouse model of pancreatic ductal adenocarcinoma. Gastroenterology 136, 1741–1749 e1746 (2009).

    Article  CAS  PubMed  Google Scholar 

  7. Santagata, S. et al. JAGGED1 expression is associated with prostate cancer metastasis and recurrence. Cancer Res. 64, 6854–6857 (2004).

    Article  CAS  PubMed  Google Scholar 

  8. Miyamoto, Y. et al. Notch mediates TGF α-induced changes in epithelial differentiation during pancreatic tumorigenesis. Cancer Cell 3, 565–576 (2003).

    Article  CAS  PubMed  Google Scholar 

  9. Brennan, C. et al. Glioblastoma subclasses can be defined by activity among signal transduction pathways and associated genomic alterations. PLoS ONE 4, e7752 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Reedijk, M. et al. High-level coexpression of JAG1 and NOTCH1 is observed in human breast cancer and is associated with poor overall survival. Cancer Res. 65, 8530–8537 (2005).

    Article  CAS  PubMed  Google Scholar 

  11. Aster, J. C., Pear, W. S. & Blacklow, S. C. Notch signaling in leukemia. Annu. Rev. Pathol. 3, 587–613 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Gordon, W. R., Arnett, K. L. & Blacklow, S. C. The molecular logic of Notch signaling-a structural and biochemical perspective. J. Cell Sci. 121, 3109–3119 (2008).

    Article  CAS  PubMed  Google Scholar 

  13. Bray, S. J. Notch signalling: a simple pathway becomes complex. Nature Rev. Mol. Cell Biol. 7, 678–689 (2006).

    Article  CAS  Google Scholar 

  14. Kopan, R. & Ilagan, M. X. The canonical Notch signaling pathway: unfolding the activation mechanism. Cell 137, 216–233 (2009). A comprehensive review on Notch signalling.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kovall, R. A. More complicated than it looks: assembly of Notch pathway transcription complexes. Oncogene 27, 5099–5109 (2008).

    Article  CAS  PubMed  Google Scholar 

  16. Fortini, M. E. Notch signaling: the core pathway and its posttranslational regulation. Dev. Cell 16, 633–647 (2009).

    Article  CAS  PubMed  Google Scholar 

  17. LaVoie, M. J. & Selkoe, D. J. The Notch ligands, Jagged and Delta, are sequentially processed by α-secretase and presenilin/γ-secretase and release signaling fragments. J. Biol. Chem. 278, 34427–34437 (2003).

    Article  CAS  PubMed  Google Scholar 

  18. Six, E. et al. The Notch ligand Delta1 is sequentially cleaved by an ADAM protease and γ-secretase. Proc. Natl Acad. Sci. USA 100, 7638–7643 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Bland, C. E., Kimberly, P. & Rand, M. D. Notch-induced proteolysis and nuclear localization of the Delta ligand. J. Biol. Chem. 278, 13607–13610 (2003).

    Article  CAS  PubMed  Google Scholar 

  20. Klueg, K. M., Parody, T. R. & Muskavitch, M. A. Complex proteolytic processing acts on Delta, a transmembrane ligand for Notch, during Drosophila development. Mol. Biol. Cell 9, 1709–1723 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. D'Souza, B., Meloty-Kapella, L. & Weinmaster, G. Canonical and non-canonical Notch ligands. Curr. Top. Dev. Biol. 92, 73–129 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Ascano, J. M., Beverly, L. J. & Capobianco, A. J. The C-terminal PDZ-ligand of JAGGED1 is essential for cellular transformation. J. Biol. Chem. 278, 8771–8779 (2003). The first evidence suggesting a bidirectional signalling by Notch ligands independently of Notch. The authors demonstrate that JAG1 can transform cells and this requires the PDZ ligand motif of the ICD.

    Article  CAS  PubMed  Google Scholar 

  23. Kolev, V. et al. The intracellular domain of Notch ligand Delta1 induces cell growth arrest. FEBS Lett. 579, 5798–5802 (2005).

    Article  CAS  PubMed  Google Scholar 

  24. Gallahan, D., Kozak, C. & Callahan, R. A new common integration region (int-3) for mouse mammary tumor virus on mouse chromosome 17. J. Virol. 61, 218–220 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Gallahan, D. & Callahan, R. The mouse mammary tumor associated gene INT3 is a unique member of the NOTCH gene family (NOTCH4). Oncogene 14, 1883–1890 (1997). This study, together with reference 24, identified the Notch locus as a common integration site in MMTV-induced tumours. Subsequently identified as NOTCH4, it was suggested that this has a role in mammary tumorigenesis.

    Article  CAS  PubMed  Google Scholar 

  26. Gallahan, D. et al. Expression of a truncated Int3 gene in developing secretory mammary epithelium specifically retards lobular differentiation resulting in tumorigenesis. Cancer Res. 56, 1775–1785 (1996). Expression of a truncated form of the Int3 (Notch4 ) gene in the mammary epithelium of mice resulted in highly malignant mammary tumours and lung metastases.

    CAS  PubMed  Google Scholar 

  27. Capobianco, A. J., Zagouras, P., Blaumueller, C. M., Artavanis-Tsakonas, S. & Bishop, J. M. Neoplastic transformation by truncated alleles of human NOTCH1/TAN1 and NOTCH2. Mol. Cell. Biol. 17, 6265–6273 (1997). A constitutively active truncated form of NOTCH1 and NOTCH2, in cooperation with the E1A adenovirus oncogene, can transform RKE cells.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Demarest, R. M., Ratti, F. & Capobianco, A. J. It's T-ALL about Notch. Oncogene 27, 5082–5091 (2008).

    Article  CAS  PubMed  Google Scholar 

  29. Ronchini, C. & Capobianco, A. J. Induction of cyclin D1 transcription and CDK2 activity by Notch(ic): implication for cell cycle disruption in transformation by Notch(ic). Mol. Cell. Biol. 21, 5925–5934 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Ling, H., Sylvestre, J. R. & Jolicoeur, P. Notch1-induced mammary tumor development is cyclin D1-dependent and correlates with expansion of pre-malignant multipotent duct-limited progenitors. Oncogene 29, 4543–4554 (2010).

    Article  CAS  PubMed  Google Scholar 

  31. Cohen, B. et al. Cyclin D1 is a direct target of JAG1-mediated Notch signaling in breast cancer. Breast Cancer Res. Treat. 123, 113–124 (2010).

    Article  CAS  PubMed  Google Scholar 

  32. Sicinska, E. et al. Requirement for cyclin D3 in lymphocyte development and T cell leukemias. Cancer Cell 4, 451–461 (2003).

    Article  CAS  PubMed  Google Scholar 

  33. Sharma, V. M. et al. Notch1 contributes to mouse T-cell leukemia by directly inducing the expression of c-myc. Mol. Cell. Biol. 26, 8022–8031 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Weng, A. P. et al. c-Myc is an important direct target of Notch1 in T-cell acute lymphoblastic leukemia/lymphoma. Genes Dev. 20, 2096–2109 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Klinakis, A. et al. Myc is a Notch1 transcriptional target and a requisite for Notch1-induced mammary tumorigenesis in mice. Proc. Natl Acad. Sci. USA 103, 9262–9267 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Palomero, T. et al. NOTCH1 directly regulates c-MYC and activates a feed-forward-loop transcriptional network promoting leukemic cell growth. Proc. Natl Acad. Sci. USA 103, 18261–18266 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Murata, J. et al. Notch-Hes1 pathway contributes to the cochlear prosensory formation potentially through the transcriptional down-regulation of p27Kip1. J. Neurosci. Res. 87, 3521–3534 (2009).

    Article  CAS  PubMed  Google Scholar 

  38. Monahan, P., Rybak, S. & Raetzman, L. T. The notch target gene HES1 regulates cell cycle inhibitor expression in the developing pituitary. Endocrinology 150, 4386–4394 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Riccio, O. et al. Loss of intestinal crypt progenitor cells owing to inactivation of both Notch1 and Notch2 is accompanied by derepression of CDK inhibitors p27Kip1 and p57Kip2. EMBO Rep. 9, 377–383 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Dohda, T. et al. Notch signaling induces SKP2 expression and promotes reduction of p27Kip1 in T-cell acute lymphoblastic leukemia cell lines. Exp. Cell Res. 313, 3141–3152 (2007).

    Article  CAS  PubMed  Google Scholar 

  41. Mittal, S., Subramanyam, D., Dey, D., Kumar, R. & Rangarajan, A. Cooperation of Notch and Ras/MAPK signaling pathways in human breast carcinogenesis. Mol. Cancer 8, 128 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Xu, P. et al. The oncogenic roles of Notch1 in astrocytic gliomas in vitro and in vivo. J. Neurooncol. 97, 41–51 (2010).

    Article  CAS  PubMed  Google Scholar 

  43. Liu, W., Singh, S. R. & Hou, S. X. JAK-STAT is restrained by Notch to control cell proliferation of the Drosophila intestinal stem cells. J. Cell. Biochem. 109, 992–999 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Li, T. et al. Epidermal growth factor receptor and notch pathways participate in the tumor suppressor function of γ-secretase. J. Biol. Chem. 282, 32264–32273 (2007).

    Article  CAS  PubMed  Google Scholar 

  45. Lefort, K. et al. Notch1 is a p53 target gene involved in human keratinocyte tumor suppression through negative regulation of ROCK1/2 and MRCKα kinases. Genes Dev. 21, 562–577 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Wang, C. et al. Notch1 signaling sensitizes tumor necrosis factor-related apoptosis-inducing ligand-induced apoptosis in human hepatocellular carcinoma cells by inhibiting Akt/Hdm2-mediated p53 degradation and up-regulating p53-dependent DR5 expression. J. Biol. Chem. 284, 16183–16190 (2009). This study suggests a mechanism by which Notch signalling induces apoptosis by activating p53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Wang, L. et al. Overexpressed active Notch1 induces cell growth arrest of HeLa cervical carcinoma cells. Int. J. Gynecol. Cancer 17, 1283–1292 (2007).

    Article  CAS  PubMed  Google Scholar 

  48. Talora, C. et al. Constitutively active Notch1 induces growth arrest of HPV-positive cervical cancer cells via separate signaling pathways. Exp. Cell Res. 305, 343–354 (2005).

    Article  CAS  PubMed  Google Scholar 

  49. Dotto, G. P. Crosstalk of Notch with p53 and p63 in cancer growth control. Nature Rev. Cancer 9, 587–595 (2009). A comprehensive review on the crosstalk between Notch and p53, which probably determines whether Notch is oncogenic or tumour suppressive.

    Article  CAS  Google Scholar 

  50. Shou, J., Ross, S., Koeppen, H., de Sauvage, F. J. & Gao, W. Q. Dynamics of notch expression during murine prostate development and tumorigenesis. Cancer Res. 61, 7291–7297 (2001).

    CAS  PubMed  Google Scholar 

  51. Whelan, J. T., Kellogg, A., Shewchuk, B. M., Hewan-Lowe, K. & Bertrand, F. E. Notch-1 signaling is lost in prostate adenocarcinoma and promotes PTEN gene expression. J. Cell. Biochem. 107, 992–1001 (2009).

    Article  CAS  PubMed  Google Scholar 

  52. Bin Hafeez, B. et al. Targeted knockdown of Notch1 inhibits invasion of human prostate cancer cells concomitant with inhibition of matrix metalloproteinase-9 and urokinase plasminogen activator. Clin. Cancer Res. 15, 452–459 (2009).

    Article  CAS  PubMed  Google Scholar 

  53. Niimi, H., Pardali, K., Vanlandewijck, M., Heldin, C. H. & Moustakas, A. Notch signaling is necessary for epithelial growth arrest by TGF-β. J. Cell Biol. 176, 695–707 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Sun, Y. et al. Notch4 intracellular domain binding to Smad3 and inhibition of the TGF-β signaling. Oncogene 24, 5365–5374 (2005).

    Article  CAS  PubMed  Google Scholar 

  55. Masuda, S. et al. Notch1 oncoprotein antagonizes TGF-β/Smad-mediated cell growth suppression via sequestration of coactivator p300. Cancer Sci. 96, 274–282 (2005).

    Article  CAS  PubMed  Google Scholar 

  56. Demehri, S., Turkoz, A. & Kopan, R. Epidermal Notch1 loss promotes skin tumorigenesis by impacting the stromal microenvironment. Cancer Cell 16, 55–66 (2009). This study demonstrates the role of the microenvironment in determining the role of Notch signalling in the skin, where Notch is known to have a tumour suppressor effect. The study shows that intact Notch signalling is not sufficient to prevent tumorigenesis when the microenvironment is tumour promoting.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Dumortier, A. et al. Atopic dermatitis-like disease and associated lethal myeloproliferative disorder arise from loss of Notch signaling in the murine skin. PLoS ONE 5, e9258 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Demehri, S. et al. Notch-deficient skin induces a lethal systemic B-lymphoproliferative disorder by secreting TSLP, a sentinel for epidermal integrity. PLoS Biol. 6, e123 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Palomero, T., Dominguez, M. & Ferrando, A. A. The role of the PTEN/AKT Pathway in NOTCH1-induced leukemia. Cell Cycle 7, 965–970 (2008).

    Article  CAS  PubMed  Google Scholar 

  60. Nair, P., Somasundaram, K. & Krishna, S. Activated Notch1 inhibits p53-induced apoptosis and sustains transformation by human papillomavirus type 16 E6 and E7 oncogenes through a PI3K-PKB/Akt-dependent pathway. J. Virol. 77, 7106–7112 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Meurette, O. et al. Notch activation induces Akt signaling via an autocrine loop to prevent apoptosis in breast epithelial cells. Cancer Res. 69, 5015–5022 (2009).

    Article  CAS  PubMed  Google Scholar 

  62. Wendorff, A. A. et al. Hes1 is a critical but context-dependent mediator of canonical Notch signaling in lymphocyte development and transformation. Immunity 33, 671–684 (2010).

    Article  CAS  PubMed  Google Scholar 

  63. Mungamuri, S., Yang, X., Thor, A. & Somasundaram, K. Survival signaling by Notch1: mammalian target of rapamycin (mTOR)-dependent inhibition of p53. Cancer Res. 66, 4715–4724 (2006).

    Article  CAS  PubMed  Google Scholar 

  64. Beverly, L., Felsher, D. & Capobianco, A. Suppression of p53 by Notch in lymphomagenesis: implications for initiation and regression. Cancer Res. 65, 7159–7168 (2005). A very elegant tetracycline-inducible mouse model, Top-Notchic, was used to show that Notch suppresses p53 through repression of the ARF–MDM2–p53 tumour surveillance pathway in lymphomagenesis.

    Article  CAS  PubMed  Google Scholar 

  65. Song, L. L. et al. Notch-1 associates with IKKα and regulates IKK activity in cervical cancer cells. Oncogene 27, 5833–5844 (2008).

    Article  CAS  PubMed  Google Scholar 

  66. Ramdass, B. et al. Coexpression of Notch1 and NF-κB signaling pathway components in human cervical cancer progression. Gynecol. Oncol. 104, 352–361 (2007).

    Article  CAS  PubMed  Google Scholar 

  67. Osipo, C., Golde, T. E., Osborne, B. A. & Miele, L. A. Off the beaten pathway: the complex cross talk between Notch and NF-κB. Lab. Invest. 88, 11–17 (2008).

    Article  CAS  PubMed  Google Scholar 

  68. Nakamura, T., Tsuchiya, K. & Watanabe, M. Crosstalk between Wnt and Notch signaling in intestinal epithelial cell fate decision. J. Gastroenterol. 42, 705–710 (2007).

    Article  CAS  PubMed  Google Scholar 

  69. Bienz, M. & Clevers, H. Linking colorectal cancer to Wnt signaling. Cell 103, 311–320 (2000).

    Article  CAS  PubMed  Google Scholar 

  70. Inomata, M., Ochiai, A., Akimoto, S., Kitano, S. & Hirohashi, S. Alteration of β-catenin expression in colonic epithelial cells of familial adenomatous polyposis patients. Cancer Res. 56, 2213–2217 (1996).

    CAS  PubMed  Google Scholar 

  71. Satoh, S. et al. AXIN1 mutations in hepatocellular carcinomas, and growth suppression in cancer cells by virus-mediated transfer of AXIN1. Nature Genet. 24, 245–250 (2000).

    Article  CAS  PubMed  Google Scholar 

  72. Korinek, V. et al. Constitutive transcriptional activation by a β-catenin-Tcf complex in APC-/- colon carcinoma. Science 275, 1784–1787 (1997).

    Article  CAS  PubMed  Google Scholar 

  73. Caldwell, G. et al. The Wnt antagonist sFRP1 in colorectal tumorigenesis. Cancer Res. 64, 883–888 (2004).

    Article  CAS  PubMed  Google Scholar 

  74. Suzuki, H. et al. Epigenetic inactivation of SFRP genes allows constitutive WNT signaling in colorectal cancer. Nature Genet. 36, 417–422 (2004).

    Article  CAS  PubMed  Google Scholar 

  75. Katoh, M., Kirikoshi, H., Terasaki, H. & Shiokawa, K. WNT2B2 mRNA, up-regulated in primary gastric cancer, is a positive regulator of the WNT- β-catenin-TCF signaling pathway. Biochem. Biophys. Res. Commun. 289, 1093–1098 (2001).

    Article  CAS  PubMed  Google Scholar 

  76. Kirikoshi, H., Sekihara, H. & Katoh, M. Expression of WNT14 and WNT14B mRNAs in human cancer, up-regulation of WNT14 by IFNγ and up-regulation of WNT14B by β-estradiol. Int. J. Oncol. 19, 1221–1225 (2001).

    CAS  PubMed  Google Scholar 

  77. Okino, K. et al. Up-regulation and overproduction of DVL-1, the human counterpart of the Drosophila dishevelled gene, in cervical squamous cell carcinoma. Oncol. Rep. 10, 1219–1223 (2003).

    CAS  PubMed  Google Scholar 

  78. Terasaki, H., Saitoh, T., Shiokawa, K. & Katoh, M. Frizzled-10, up-regulated in primary colorectal cancer, is a positive regulator of the WNT - β-catenin - TCF signaling pathway. Int. J. Mol. Med. 9, 107–112 (2002).

    CAS  PubMed  Google Scholar 

  79. Bjorklund, P., Akerstrom, G. & Westin, G. An LRP5 receptor with internal deletion in hyperparathyroid tumors with implications for deregulated WNT/β-catenin signaling. PLoS Med. 4, e328 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. van Es, J. et al. Notch/γ-secretase inhibition turns proliferative cells in intestinal crypts and adenomas into goblet cells. Nature 435, 959–963 (2005).

    Article  CAS  PubMed  Google Scholar 

  81. Axelrod, J., Matsuno, K., Artavanis-Tsakonas, S. & Perrimon, N. Interaction between Wingless and Notch signaling pathways mediated by dishevelled. Science 271, 1826–1832 (1996). D. melanogaster DSH, which is a transducer of WNT signalling, antagonizes the Notch pathway through a direct physical interaction with the C terminus of Notch.

    Article  CAS  PubMed  Google Scholar 

  82. Couso, J. & Martinez Arias, A. Notch is required for wingless signaling in the epidermis of Drosophila. Cell 79, 259–272 (1994).

    Article  CAS  PubMed  Google Scholar 

  83. Giraldez, A. & Cohen, S. Wingless and Notch signaling provide cell survival cues and control cell proliferation during wing development. Development 130, 6533–6543 (2003).

    Article  CAS  PubMed  Google Scholar 

  84. Jin, Y. et al. β-catenin modulates the level and transcriptional activity of Notch1/NICD through its direct interaction. Biochim. Biophys. Acta 1793, 290–299 (2009).

    Article  CAS  PubMed  Google Scholar 

  85. Alves-Guerra, M., Ronchini, C. & Capobianco, A. Mastermind-like 1 is a specific coactivator of β-catenin transcription activation and is essential for colon carcinoma cell survival. Cancer Res. 67, 8690–8698 (2007). This paper is the first report of a role for MAML1outside of the Notch pathway. MAML1is recruited to the CCND1 promoter by β-catenin, and knock down of MAML1in colonic carcinoma cells results in cell death.

    Article  CAS  PubMed  Google Scholar 

  86. Nicolas, M. et al. Notch1 functions as a tumor suppressor in mouse skin. Nature Genet. 33, 416–421 (2003). A key paper demonstrating a tumour suppressor role for NOTCH1 and also the interactions with the WNT pathway.

    Article  CAS  PubMed  Google Scholar 

  87. Devgan, V., Mammucari, C., Millar, S. E., Brisken, C. & Dotto, G. P. p21WAF1/Cip1 is a negative transcriptional regulator of Wnt4 expression downstream of Notch1 activation. Genes Dev. 19, 1485–1495 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. De La, O. J. et al. Notch and Kras reprogram pancreatic acinar cells to ductal intraepithelial neoplasia. Proc. Natl Acad. Sci. USA 105, 18907–18912 (2008).

    Article  Google Scholar 

  89. De La, O. J. & Murtaugh, L. C. Notch and Kras in pancreatic cancer: at the crossroads of mutation, differentiation and signaling. Cell Cycle 8, 1860–1864 (2009).

    Article  Google Scholar 

  90. Weijzen, S. et al. Activation of Notch-1 signaling maintains the neoplastic phenotype in human Ras-transformed cells. Nature Med. 8, 979–986 (2002). A study that gives an insight into the role of Notch signalling in RAS-driven cancers.

    Article  CAS  PubMed  Google Scholar 

  91. Claxton, S. & Fruttiger, M. Periodic Delta-like 4 expression in developing retinal arteries. Gene Expr. Patterns 5, 123–127 (2004).

    Article  CAS  PubMed  Google Scholar 

  92. Hellstrom, M. et al. Dll4 signalling through Notch1 regulates formation of tip cells during angiogenesis. Nature 445, 776–780 (2007).

    Article  PubMed  CAS  Google Scholar 

  93. Suchting, S. et al. The Notch ligand Delta-like 4 negatively regulates endothelial tip cell formation and vessel branching. Proc. Natl Acad. Sci. USA 104, 3225–3230 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Mailhos, C. et al. Delta4, an endothelial specific notch ligand expressed at sites of physiological and tumor angiogenesis. Differentiation 69, 135–144 (2001).

    Article  CAS  PubMed  Google Scholar 

  95. Patel, N. et al. Up-regulation of endothelial delta-like 4 expression correlates with vessel maturation in bladder cancer. Clin. Cancer Res. 12, 4836–4844 (2006).

    Article  CAS  PubMed  Google Scholar 

  96. Thurston, G., Noguera-Troise, I. & Yancopoulos, G. The Delta paradox: DLL4 blockade leads to more tumour vessels but less tumour growth. Nature Rev. Cancer 7, 327–331 (2007).

    Article  CAS  Google Scholar 

  97. Patel, N. et al. Up-regulation of delta-like 4 ligand in human tumor vasculature and the role of basal expression in endothelial cell function. Cancer Res. 65, 8690–8697 (2005).

    Article  CAS  PubMed  Google Scholar 

  98. Noguera-Troise, I. et al. Blockade of Dll4 inhibits tumour growth by promoting non-productive angiogenesis. Nature 444, 1032–1037 (2006).

    Article  CAS  PubMed  Google Scholar 

  99. Benedito, R. et al. The notch ligands Dll4 and Jagged1 have opposing effects on angiogenesis. Cell 137, 1124–1135 (2009). Differential effects of Notch ligands on angiogenesis. The study suggests that modification by Fringe probably modulates Notch activity during angiogenesis.

    Article  CAS  PubMed  Google Scholar 

  100. Panin, V. M., Papayannopoulos, V., Wilson, R. & Irvine, K. D. Fringe modulates Notch-ligand interactions. Nature 387, 908–912 (1997).

    Article  CAS  PubMed  Google Scholar 

  101. Fu, Y. et al. Differential regulation of transforming growth factor β signaling pathways by Notch in human endothelial cells. J. Biol. Chem. 284, 19452–19462 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Itoh, F. et al. Synergy and antagonism between Notch and BMP receptor signaling pathways in endothelial cells. EMBO J. 23, 541–551 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Thiery, J. P. Epithelial-mesenchymal transitions in development and pathologies. Curr. Opin. Cell Biol. 15, 740–746 (2003). A comprehensive review on EMT.

    Article  CAS  PubMed  Google Scholar 

  104. Leong, K. et al. Jagged1-mediated Notch activation induces epithelial-to-mesenchymal transition through Slug-induced repression of E-cadherin. J. Exp. Med. 204, 2935–2948 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Chen, J., Imanaka, N. & Griffin, J. D. Hypoxia potentiates Notch signaling in breast cancer leading to decreased E-cadherin expression and increased cell migration and invasion. Br. J. Cancer 102, 351–360 (2010).

    Article  CAS  PubMed  Google Scholar 

  106. Sahlgren, C., Gustafsson, M. V., Jin, S., Poellinger, L. & Lendahl, U. Notch signaling mediates hypoxia-induced tumor cell migration and invasion. Proc. Natl Acad. Sci. USA 105, 6392–6397 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Zavadil, J., Cermak, L., Soto-Nieves, N. & Bottinger, E. P. Integration of TGF-β/Smad and Jagged1/Notch signalling in epithelial-to-mesenchymal transition. EMBO J. 23, 1155–1165 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Mani, S. et al. The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell 133, 704–715 (2008). This paper demonstrates that the induction of an EMT in immortalized mammary epithelial cells results in the expression of stem cell markers and an increased ability to self-renew. The paper suggests EMT as a mechanism of conferring stem-like properties to cells.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Lapidot, T. et al. A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature 367, 645–648 (1994).

    Article  CAS  PubMed  Google Scholar 

  110. Bonnet, D. & Dick, J. Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nature Med. 3, 730–737 (1997).

    Article  CAS  PubMed  Google Scholar 

  111. Cicalese, A. et al. The tumor suppressor p53 regulates polarity of self-renewing divisions in mammary stem cells. Cell 138, 1083–1095 (2009).

    Article  CAS  PubMed  Google Scholar 

  112. Al-Hajj, M., Wicha, M., Benito-Hernandez, A., Morrison, S. & Clarke, M. Prospective identification of tumorigenic breast cancer cells. Proc. Natl Acad. Sci. USA 100, 3983–3988 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Boiko, A. D. et al. Human melanoma-initiating cells express neural crest nerve growth factor receptor CD271. Nature 466, 133–137 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Lee, C., Dosch, J. & Simeone, D. Pancreatic cancer stem cells. J. Clin. Oncol. 26, 2806–2812 (2008).

    Article  PubMed  Google Scholar 

  115. Maitland, N. & Collins, A. Prostate cancer stem cells: a new target for therapy. J. Clin. Oncol. 26, 2862–2870 (2008).

    Article  PubMed  Google Scholar 

  116. O'Brien, C., Pollett, A., Gallinger, S. & Dick, J. A human colon cancer cell capable of initiating tumour growth in immunodeficient mice. Nature 445, 106–110 (2007).

    Article  CAS  PubMed  Google Scholar 

  117. Peacock, C. & Watkins, D. Cancer stem cells and the ontogeny of lung cancer. J. Clin. Oncol. 26, 2883–2889 (2008).

    Article  CAS  PubMed  Google Scholar 

  118. Prince, M. & Ailles, L. Cancer stem cells in head and neck squamous cell cancer. J. Clin. Oncol. 26, 2871–2875 (2008).

    Article  PubMed  Google Scholar 

  119. Sell, S. & Leffert, H. Liver cancer stem cells. J. Clin. Oncol. 26, 2800–2805 (2008).

    Article  PubMed  Google Scholar 

  120. Singh, S. et al. Identification of a cancer stem cell in human brain tumors. Cancer Res. 63, 5821–5828 (2003).

    CAS  PubMed  Google Scholar 

  121. Bao, S. et al. Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature 444, 756–760 (2006).

    Article  CAS  PubMed  Google Scholar 

  122. Dean, M., Fojo, T. & Bates, S. Tumour stem cells and drug resistance. Nature Rev. Cancer 5, 275–284 (2005).

    Article  CAS  Google Scholar 

  123. Bao, S. et al. Stem cell-like glioma cells promote tumor angiogenesis through vascular endothelial growth factor. Cancer Res. 66, 7843–7848 (2006).

    Article  CAS  PubMed  Google Scholar 

  124. Pistollato, F. et al. Interaction of hypoxia-inducible factor-1α and Notch signaling regulates medulloblastoma precursor proliferation and fate. Stem Cells 28, 1918–1929 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Varnum-Finney, B. et al. Pluripotent, cytokine-dependent, hematopoietic stem cells are immortalized by constitutive Notch1 signaling. Nature Med. 6, 1278–1281 (2000).

    Article  CAS  PubMed  Google Scholar 

  126. Dontu, G. et al. Role of Notch signaling in cell-fate determination of human mammary stem/progenitor cells. Breast Cancer Res. 6, R605–R615 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Farnie, G. & Clarke, R. Mammary stem cells and breast cancer-role of Notch signalling. Stem Cell Rev. 3, 169–175 (2007).

    CAS  Google Scholar 

  128. Farnie, G. et al. Novel cell culture technique for primary ductal carcinoma in situ: role of Notch and epidermal growth factor receptor signaling pathways. J. Natl Cancer Inst. 99, 616–627 (2007).

    Article  CAS  PubMed  Google Scholar 

  129. Zhang, X. et al. Notch activation promotes cell proliferation and the formation of neural stem cell-like colonies in human glioma cells. Mol. Cell. Biochem. 307, 101–108 (2008).

    Article  CAS  PubMed  Google Scholar 

  130. Hitoshi, S. et al. Notch pathway molecules are essential for the maintenance, but not the generation, of mammalian neural stem cells. Genes Dev. 16, 846–858 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Hitoshi, S. et al. Primitive neural stem cells from the mammalian epiblast differentiate to definitive neural stem cells under the control of Notch signaling. Genes Dev. 18, 1806–1811 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Nakamura, Y. et al. The bHLH gene hes1 as a repressor of the neuronal commitment of CNS stem cells. J. Neurosci. 20, 283–293 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Fan, X. et al. Notch pathway blockade depletes CD133-positive glioblastoma cells and inhibits growth of tumor neurospheres and xenografts. Stem Cells 28, 5–16 (2009).

    Article  CAS  Google Scholar 

  134. Meng, R. D. et al. γ-secretase inhibitors abrogate oxaliplatin-induced activation of the Notch-1 signaling pathway in colon cancer cells resulting in enhanced chemosensitivity. Cancer Res. 69, 573–582 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Doucas, H. et al. Expression of nuclear Notch3 in pancreatic adenocarcinomas is associated with adverse clinical features, and correlates with the expression of STAT3 and phosphorylated Akt. J. Surg. Oncol. 97, 63–68 (2008).

    Article  PubMed  Google Scholar 

  136. Akiyoshi, T. et al. γ-secretase inhibitors enhance taxane-induced mitotic arrest and apoptosis in colon cancer cells. Gastroenterology 134, 131–144 (2008).

    Article  CAS  PubMed  Google Scholar 

  137. Ristorcelli, E., Beraud, E., Mathieu, S., Lombardo, D. & Verine, A. Essential role of Notch signaling in apoptosis of human pancreatic tumoral cells mediated by exosomal nanoparticles. Int. J. Cancer 125, 1016–1026 (2009).

    Article  CAS  PubMed  Google Scholar 

  138. Wang, Z. et al. Down-regulation of Notch-1 and Jagged-1 inhibits prostate cancer cell growth, migration and invasion, and induces apoptosis via inactivation of Akt, mTOR, and NF-κB signaling pathways. J. Cell. Biochem. 109, 726–736 (2010).

    CAS  PubMed  Google Scholar 

  139. Osipo, C. et al. ErbB-2 inhibition activates Notch-1 and sensitizes breast cancer cells to a γ-secretase inhibitor. Oncogene 27, 5019–5032 (2008).

    Article  CAS  PubMed  Google Scholar 

  140. Hao, L. et al. Notch-1 activates estrogen receptor-α-dependent transcription via IKKα in breast cancer cells. Oncogene 29, 201–213 (2010).

    Article  CAS  PubMed  Google Scholar 

  141. Lee, C. W. et al. A functional Notch-survivin gene signature in basal breast cancer. Breast Cancer Res. 10, R97 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  142. Lee, C. W., Raskett, C. M., Prudovsky, I. & Altieri, D. C. Molecular dependence of estrogen receptor-negative breast cancer on a notch-survivin signaling axis. Cancer Res. 68, 5273–5281 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Wang, J. et al. Notch promotes radioresistance of glioma stem cells. Stem Cells 28, 17–28 (2010). Glioma stem cells are resistant to radiation and this paper shows that blocking Notch signalling with GSIs sensitizes these cells to radiation and impairs xenograft formation. The mechanism is thought to be through the reduction of AKT activity.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Gilbert, C. A., Daou, M. C., Moser, R. P. & Ross, A. H. γ-secretase inhibitors enhance temozolomide treatment of human gliomas by inhibiting neurosphere repopulation and xenograft recurrence. Cancer Res. 70, 6870–6879 (2010). This study, together with references 139 and 142, demonstrates that Notch signalling is responsible for resistance to chemotherapeutic agents and shows the importance of using other therapeutic agents in combination with Notch inhibitors (GSI) for effective therapy.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Dikic, I. & Schmidt, M. H. Notch: implications of endogenous inhibitors for therapy. Bioessays 32, 481–487 (2010).

    Article  CAS  PubMed  Google Scholar 

  146. Wu, Y. et al. Therapeutic antibody targeting of individual Notch receptors. Nature 464, 1052–1057 (2010).

    Article  CAS  PubMed  Google Scholar 

  147. Yin, L., Velazquez, O. C. & Liu, Z. J. Notch signaling: emerging molecular targets for cancer therapy. Biochem. Pharmacol. 80, 690–701 (2010).

    Article  CAS  PubMed  Google Scholar 

  148. Harrison, H. et al. Regulation of breast cancer stem cell activity by signaling through the Notch4 receptor. Cancer Res. 70, 709–718 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Mazur, P. K. et al. Notch2 is required for progression of pancreatic intraepithelial neoplasia and development of pancreatic ductal adenocarcinoma. Proc. Natl Acad. Sci. USA 107, 13438–13443 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Tonon, G. et al. t(11;19)(q21;p13) translocation in mucoepidermoid carcinoma creates a novel fusion product that disrupts a Notch signaling pathway. Nature Genet. 33, 208–213 (2003).

    Article  CAS  PubMed  Google Scholar 

  151. Enlund, F. et al. Altered Notch signaling resulting from expression of a WAMTP1-MAML2 gene fusion in mucoepidermoid carcinomas and benign Warthin's tumors. Exp. Cell Res. 292, 21–28 (2004).

    Article  CAS  PubMed  Google Scholar 

  152. Lennerz, J. K., Perry, A., Mills, J. C., Huettner, P. C. & Pfeifer, J. D. Mucoepidermoid carcinoma of the cervix: another tumor with the t(11;19)-associated CRTC1-MAML2 gene fusion. Am. J. Surg. Pathol. 33, 835–843 (2009).

    Article  PubMed  Google Scholar 

  153. Behboudi, A. et al. Clear cell hidradenoma of the skin-a third tumor type with a t(11;19)-associated TORC1-MAML2 gene fusion. Genes Chromosomes Cancer 43, 202–205 (2005).

    Article  CAS  PubMed  Google Scholar 

  154. Martinez, A. M. et al. Polyhomeotic has a tumor suppressor activity mediated by repression of Notch signaling. Nature Genet. 41, 1076–1082 (2009).

    Article  CAS  PubMed  Google Scholar 

  155. Ferres-Marco, D. et al. Epigenetic silencers and Notch collaborate to promote malignant tumours by Rb silencing. Nature 439, 430–436 (2006).

    Article  CAS  PubMed  Google Scholar 

  156. Moshkin, Y. M. et al. Histone chaperones ASF1 and NAP1 differentially modulate removal of active histone marks by LID-RPD3 complexes during NOTCH silencing. Mol. Cell 35, 782–793 (2009).

    Article  CAS  PubMed  Google Scholar 

  157. Goodfellow, H. et al. Gene-specific targeting of the histone chaperone Asf1 to mediate silencing. Dev. Cell 13, 593–600 (2007).

    Article  CAS  PubMed  Google Scholar 

  158. Takeuchi, T., Adachi, Y. & Ohtsuki, Y. Skeletrophin, a novel ubiquitin ligase to the intracellular region of Jagged-2, is aberrantly expressed in multiple myeloma. Am. J. Pathol. 166, 1817–1826 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Takeuchi, T., Adachi, Y., Sonobe, H., Furihata, M. & Ohtsuki, Y. A ubiquitin ligase, skeletrophin, is a negative regulator of melanoma invasion. Oncogene 25, 7059–7069 (2006).

    Article  CAS  PubMed  Google Scholar 

  160. Wu, G. et al. SEL-10 is an inhibitor of notch signaling that targets notch for ubiquitin-mediated protein degradation. Mol. Cell. Biol. 21, 7403–7415 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Akhoondi, S. et al. FBXW7/hCDC4 is a general tumor suppressor in human cancer. Cancer Res. 67, 9006–9012 (2007).

    Article  CAS  PubMed  Google Scholar 

  162. Miyaki, M. et al. Somatic mutations of the CDC4 (FBXW7) gene in hereditary colorectal tumors. Oncology 76, 430–434 (2009).

    Article  CAS  PubMed  Google Scholar 

  163. Lan, K. et al. Kaposi's sarcoma herpesvirus-encoded latency-associated nuclear antigen stabilizes intracellular activated Notch by targeting the Sel10 protein. Proc. Natl Acad. Sci. USA 104, 16287–16292 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. McGill, M. A. & McGlade, C. J. Mammalian numb proteins promote Notch1 receptor ubiquitination and degradation of the Notch1 intracellular domain. J. Biol. Chem. 278, 23196–23203 (2003).

    Article  CAS  PubMed  Google Scholar 

  165. Pece, S. et al. Loss of negative regulation by Numb over Notch is relevant to human breast carcinogenesis. J. Cell Biol. 167, 215–221 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Colaluca, I. N. et al. NUMB controls p53 tumour suppressor activity. Nature 451, 76–80 (2008).

    Article  CAS  PubMed  Google Scholar 

  167. Matsuno, K., Diederich, R. J., Go, M. J., Blaumueller, C. M. & Artavanis-Tsakonas, S. Deltex acts as a positive regulator of Notch signaling through interactions with the Notch ankyrin repeats. Development 121, 2633–2644 (1995).

    Article  CAS  PubMed  Google Scholar 

  168. Matsuno, K. et al. Human deltex is a conserved regulator of Notch signalling. Nature Genet. 19, 74–78 (1998).

    Article  CAS  PubMed  Google Scholar 

  169. Izon, D. J. et al. Deltex1 redirects lymphoid progenitors to the B cell lineage by antagonizing Notch1. Immunity 16, 231–243 (2002).

    Article  CAS  PubMed  Google Scholar 

  170. Yamamoto, N. et al. Role of Deltex-1 as a transcriptional regulator downstream of the Notch receptor. J. Biol. Chem. 276, 45031–45040 (2001).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank members of the Capobianco laboratory for support and D. Robbins and J. Diez for critical reading of the manuscript and useful suggestions. Work in the authors' laboratory is partly supported by grants from the US National Cancer Institute (ROI CA 83736) and the Samuel Waxman Foundation for Cancer Research, USA. The authors sincerely apologize to all their colleagues whose work has not been referenced in this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anthony J. Capobianco.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information S1 (table)

Role of Notch in solid tumors (PDF 265 kb)

Related links

Related links

FURTHER INFORMATION

Anthony J. Capobianco's homepage

ClinicalTrials.gov

Glossary

Negative selection

The intrathymic elimination of CD4+CD8+ thymocytes that express T cell receptors with high affinity for self antigens.

Type I transmembrane receptors

Proteins that span the plasma membrane once, with the carboxy-terminal end extending into the cytoplasm.

Exocrine pancreas

The portion of the pancreas that secretes digestive enzymes that are then passed on to the small intestine.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ranganathan, P., Weaver, K. & Capobianco, A. Notch signalling in solid tumours: a little bit of everything but not all the time. Nat Rev Cancer 11, 338–351 (2011). https://doi.org/10.1038/nrc3035

Download citation

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nrc3035

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer