Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Zebrafish cancer: the state of the art and the path forward

Key Points

  • Zebrafish develop cancer that is histologically and genetically similar to that of humans and it can develop spontaneously, after mutagen exposure or through transgenesis.

  • Large-scale transgenesis using hundreds to thousands of embryos per day allows for deep functional characterization of genetic abnormalities that have been discovered in human cancer studies, such as The Cancer Genome Atlas.

  • Chemical screens have successfully been used in zebrafish embryos to find molecules and pathways that are directly relevant to human malignancy, and drugs from these screens have entered clinical trials in patients.

  • Large-scale forward genetic screens offer a unique opportunity to identify cancer phenotypes in an unbiased manner.

  • Transparent embryos and adults allows for in vivo visualization of cancer growth and progression at single-cell resolution.

  • Xenotransplantation of human cancer cells into zebrafish larvae provides opportunities for personalized cancer screens.

  • Major areas of growth in the coming decade include modelling multigenic changes in cancer, epigenetics and the dissection of metastasis.

Abstract

The zebrafish is a recent addition to animal models of human cancer, and studies using this model are rapidly contributing major insights. Zebrafish develop cancer spontaneously, after mutagen exposure and through transgenesis. The tumours resemble human cancers at the histological, gene expression and genomic levels. The ability to carry out in vivo imaging, chemical and genetic screens, and high-throughput transgenesis offers a unique opportunity to functionally characterize the cancer genome. Moreover, increasingly sophisticated modelling of combinations of genetic and epigenetic alterations will allow the zebrafish to complement what can be achieved in other models, such as mouse and human cell culture systems.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Zebrafish anatomy.
Figure 2: Studying cancer in the zebrafish.
Figure 3: Cross-species oncogenomics provides a powerful way to identify highly evolutionarily conserved events in tumorigenesis.
Figure 4: Transplantation tools available in the zebrafish.
Figure 5: Chemical screening in the zebrafish.

Similar content being viewed by others

References

  1. Zhang, J. et al. The genetic basis of early T-cell precursor acute lymphoblastic leukaemia. Nature 481, 157–163 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Ding, L. et al. Clonal evolution in relapsed acute myeloid leukaemia revealed by whole-genome sequencing. Nature 481, 506–510 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Berger, M. F. et al. Melanoma genome sequencing reveals frequent PREX2 mutations. Nature 485, 502–506 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Driever, W. et al. A genetic screen for mutations affecting embryogenesis in zebrafish. Development 123, 37–46 (1996).

    CAS  PubMed  Google Scholar 

  5. Haffter, P. et al. The identification of genes with unique and essential functions in the development of the zebrafish, Danio rerio. Development 123, 1–36 (1996). References 4 and 5 are landmark papers describing the use of the zebrafish in a phenotypic forward genetic screen.

    CAS  PubMed  Google Scholar 

  6. Dimitrijevic, N. et al. Activation of the Xmrk proto-oncogene of Xiphophorus by overexpression and mutational alterations. Oncogene 16, 1681–1690 (1998).

    CAS  PubMed  Google Scholar 

  7. Pliss, G. B., Zabezhinski, M. A., Petrov, A. S. & Khudoley, V. V. Peculiarities of N-nitramines carcinogenic action. Arch. Geschwulstforsch 52, 629–634 (1982).

    CAS  PubMed  Google Scholar 

  8. Beckwith, L. G., Moore, J. L., Tsao-Wu, G. S., Harshbarger, J. C. & Cheng, K. C. Ethylnitrosourea induces neoplasia in zebrafish (Danio rerio). Lab Invest. 80, 379–385 (2000).

    CAS  PubMed  Google Scholar 

  9. Spitsbergen, J. M. et al. Neoplasia in zebrafish (Danio rerio) treated with 7,12-dimethylbenz[a]anthracene by two exposure routes at different developmental stages. Toxicol. Pathol. 28, 705–715 (2000).

    CAS  PubMed  Google Scholar 

  10. Spitsbergen, J. M. et al. Neoplasia in zebrafish (Danio rerio) treated with N-methyl-N′-nitro-N-nitrosoguanidine by three exposure routes at different developmental stages. Toxicol. Pathol. 28, 716–725 (2000).

    CAS  PubMed  Google Scholar 

  11. Culp, P., Nusslein-Volhard, C. & Hopkins, N. High-frequency germ-line transmission of plasmid DNA sequences injected into fertilized zebrafish eggs. Proc. Natl Acad. Sci. USA 88, 7953–7957 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Lin, S., Yang, S. & Hopkins, N. lacZ expression in germline transgenic zebrafish can be detected in living embryos. Dev. Biol. 161, 77–83 (1994).

    PubMed  Google Scholar 

  13. Lin, S. et al. Integration and germ-line transmission of a pseudotyped retroviral vector in zebrafish. Science 265, 666–669 (1994).

    CAS  PubMed  Google Scholar 

  14. Langenau, D. M. et al. Myc-induced T cell leukemia in transgenic zebrafish. Science 299, 887–890 (2003). The first description of a transgenic cancer model in the zebrafish.

    CAS  PubMed  Google Scholar 

  15. Berghmans, S. et al. Making waves in cancer research: new models in the zebrafish. Biotechniques 39, 227–237 (2005).

    CAS  PubMed  Google Scholar 

  16. Stoletov, K. & Klemke, R. Catch of the day: zebrafish as a human cancer model. Oncogene 27, 4509–4520 (2008).

    CAS  PubMed  Google Scholar 

  17. Berghmans, S. et al. tp53 mutant zebrafish develop malignant peripheral nerve sheath tumors. Proc. Natl Acad. Sci. USA 102, 407–412 (2005). The first description of a conserved tumour-suppressor function of p53 in zebrafish.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Vogelstein, B. et al. Cancer genome landscapes. Science 339, 1546–1558 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Lin, W. M. et al. Modeling genomic diversity and tumor dependency in malignant melanoma. Cancer Res. 68, 664–673 (2008).

    CAS  PubMed  Google Scholar 

  20. Ceol, C. J. et al. The histone methyltransferase SETDB1 is recurrently amplified in melanoma and accelerates its onset. Nature 471, 513–517 (2011). An in vivo genetic overexpression screen that used human oncogenomic data with in vivo melanoma modelling in the adult zebrafish.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Macgregor, S. et al. Genome-wide association study identifies a new melanoma susceptibility locus at 1q21.3. Nature Genet. 43, 1114–1118 (2011).

    CAS  PubMed  Google Scholar 

  22. Liu, S. & Leach, S. D. Screening pancreatic oncogenes in zebrafish using the Gal4/UAS system. Methods Cell Biol. 105, 367–381 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Zhu, S. et al. Activated ALK collaborates with MYCN in neuroblastoma pathogenesis. Cancer Cell 21, 362–373 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Rudner, L. A. et al. Shared acquired genomic changes in zebrafish and human T-ALL. Oncogene 30, 4289–4296 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Lam, S. H. et al. Conservation of gene expression signatures between zebrafish and human liver tumors and tumor progression. Nature Biotech. 24, 73–75 (2006). A comprehensive analysis demonstrating the conservation of transcriptomic signatures between zebrafish and human liver cancer.

    CAS  Google Scholar 

  26. Lam, S. H. & Gong, Z. Modeling liver cancer using zebrafish: a comparative oncogenomics approach. Cell Cycle 5, 573–577 (2006).

    CAS  PubMed  Google Scholar 

  27. Dovey, M., White, R. M. & Zon, L. I. Oncogenic NRAS cooperates with p53 loss to generate melanoma in zebrafish. Zebrafish 6, 397–404 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. White, R. M. et al. DHODH modulates transcriptional elongation in the neural crest and melanoma. Nature 471, 518–522 (2011). A chemical genetic screen in zebrafish to identify small-molecule suppressors of melanoma progenitors, the results of which have led to human clinical trials.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Langenau, D. M. et al. Effects of RAS on the genesis of embryonal rhabdomyosarcoma. Genes Dev. 21, 1382–1395 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Santoriello, C. et al. Kita driven expression of oncogenic HRAS leads to early onset and highly penetrant melanoma in zebrafish. PLoS ONE 5, e15170 (2010).

    PubMed  PubMed Central  Google Scholar 

  31. Patton, E. E. et al. BRAF mutations are sufficient to promote nevi formation and cooperate with p53 in the genesis of melanoma. Curr. Biol. 15, 249–254 (2005).

    CAS  PubMed  Google Scholar 

  32. Mizgireuv, I. V. & Revskoy, S. Y. Transplantable tumor lines generated in clonal zebrafish. Cancer Res. 66, 3120–3125 (2006).

    CAS  PubMed  Google Scholar 

  33. Mizgirev, I. & Revskoy, S. Generation of clonal zebrafish lines and transplantable hepatic tumors. Nature Protoc. 5, 383–394 (2010).

    CAS  Google Scholar 

  34. Sabaawy, H. E. et al. TEL-AML1 transgenic zebrafish model of precursor B cell acute lymphoblastic leukemia. Proc. Natl Acad. Sci. USA 103, 15166–15171 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Gill, J. A. et al. Enforced expression of Simian virus 40 large T-antigen leads to testicular germ cell tumors in zebrafish. Zebrafish 7, 333–341 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Nguyen, A. T. et al. An inducible krasV12 transgenic zebrafish model for liver tumorigenesis and chemical drug screening. Dis. Model. Mech. 5, 63–72 (2012).

    CAS  PubMed  Google Scholar 

  37. Ignatius, M. S. et al. In vivo imaging of tumor-propagating cells, regional tumor heterogeneity, and dynamic cell movements in embryonal rhabdomyosarcoma. Cancer Cell 21, 680–693 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. White, R. M. et al. Transparent adult zebrafish as a tool for in vivo transplantation analysis. Cell Stem Cell 2, 183–189 (2008). A paper describing the development of the transparent casper transplant model.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Feng, H. et al. T-lymphoblastic lymphoma cells express high levels of BCL2, S1P1, and ICAM1, leading to a blockade of tumor cell intravasation. Cancer Cell 18, 353–366 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Smith, A. C. et al. High-throughput cell transplantation establishes that tumor-initiating cells are abundant in zebrafish T-cell acute lymphoblastic leukemia. Blood 115, 3296–3303 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Marques, I. J. et al. Metastatic behaviour of primary human tumours in a zebrafish xenotransplantation model. BMC Cancer 9, 128 (2009). A demonstration of the feasibility of transplanting human cancer cells into embryonic zebrafish as a readout for metastatic capacity.

    PubMed  PubMed Central  Google Scholar 

  42. Vlecken, D. H. & Bagowski, C. P. LIMK1 and LIMK2 are important for metastatic behavior and tumor cell-induced angiogenesis of pancreatic cancer cells. Zebrafish 6, 433–439 (2009).

    CAS  PubMed  Google Scholar 

  43. Rouhi, P. et al. Pathological angiogenesis facilitates tumor cell dissemination and metastasis. Cell Cycle 9, 913–917 (2010).

    CAS  PubMed  Google Scholar 

  44. Stoletov, K. et al. Visualizing extravasation dynamics of metastatic tumor cells. J. Cell Sci. 123, 2332–2341 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Zhao, C. et al. A novel xenograft model in zebrafish for high-resolution investigating dynamics of neovascularization in tumors. PLoS ONE 6, e21768 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Zhao, C. et al. Distinct contributions of angiogenesis and vascular co-option during the initiation of primary microtumors and micrometastases. Carcinogenesis 32, 1143–1150 (2011).

    CAS  PubMed  Google Scholar 

  47. Eguiara, A. et al. Xenografts in zebrafish embryos as a rapid functional assay for breast cancer stem-like cell identification. Cell Cycle 10, 3751–3757 (2011).

    CAS  PubMed  Google Scholar 

  48. Ghotra, V. P. et al. Automated whole animal bio-imaging assay for human cancer dissemination. PLoS ONE 7, e31281 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Topczewska, J. M. et al. Embryonic and tumorigenic pathways converge via Nodal signaling: role in melanoma aggressiveness. Nature Med. 12, 925–932 (2006).

    CAS  PubMed  Google Scholar 

  50. Joyce, J. A. & Pollard, J. W. Microenvironmental regulation of metastasis. Nature Rev. Cancer 9, 239–252 (2009).

    CAS  Google Scholar 

  51. Choorapoikayil, S., Kuiper, R. V., de Bruin, A. & den Hertog, J. Haploinsufficiency of the genes encoding the tumor suppressor Pten predisposes zebrafish to hemangiosarcoma. Dis. Model. Mech. 5, 241–247 (2012).

    CAS  PubMed  Google Scholar 

  52. Patton, E. E. Live imaging in zebrafish reveals neu(trophil) insight into the metastatic niche. J. Pathol. 227, 381–384 (2012).

    CAS  PubMed  Google Scholar 

  53. Bertrand, J. Y. et al. Definitive hematopoiesis initiates through a committed erythromyeloid progenitor in the zebrafish embryo. Development 134, 4147–4156 (2007).

    CAS  PubMed  Google Scholar 

  54. Murphy, E. A. et al. Disruption of angiogenesis and tumor growth with an orally active drug that stabilizes the inactive state of PDGFRβ/B-RAF. Proc. Natl Acad. Sci. USA 107, 4299–4304 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Corkery, D. P., Dellaire, G. & Berman, J. N. Leukaemia xenotransplantation in zebrafish--chemotherapy response assay in vivo. Br. J. Haematol. 153, 786–789 (2011).

    CAS  PubMed  Google Scholar 

  56. Wang, C. et al. Rosuvastatin, identified from a zebrafish chemical genetic screen for antiangiogenic compounds, suppresses the growth of prostate cancer. Eur. Urol. 58, 418–426 (2010).

    CAS  PubMed  Google Scholar 

  57. Stoletov, K., Montel, V., Lester, R. D., Gonias, S. L. & Klemke, R. High-resolution imaging of the dynamic tumor cell vascular interface in transparent zebrafish. Proc. Natl Acad. Sci. USA 104, 17406–17411 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Clark, E. A., Golub, T. R., Lander, E. S. & Hynes, R. O. Genomic analysis of metastasis reveals an essential role for RhoC. Nature 406, 532–535 (2000).

    CAS  PubMed  Google Scholar 

  59. Adatto, I., Lawrence, C., Thompson, M. & Zon, L. I. A new system for the rapid collection of large numbers of developmentally staged zebrafish embryos. PLoS ONE 6, e21715 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Van Leeuwen, C. J., Grootelaar, E. M. & Niebeek, G. Fish embryos as teratogenicity screens: a comparison of embryotoxicity between fish and birds. Ecotoxicol. Environ. Saf 20, 42–52 (1990).

    CAS  PubMed  Google Scholar 

  61. Peterson, R. T., Link, B. A., Dowling, J. E. & Schreiber, S. L. Small molecule developmental screens reveal the logic and timing of vertebrate development. Proc. Natl Acad. Sci. USA 97, 12965–12969 (2000). The first systematic chemical screen in zebrafish.

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Stern, H. M. et al. Small molecules that delay S phase suppress a zebrafish bmyb mutant. Nature Chem. Biol. 1, 366–370 (2005).

    CAS  Google Scholar 

  63. Saville, M. K. & Watson, R. J. B-Myb: a key regulator of the cell cycle. Adv. Cancer Res. 72, 109–140 (1998).

    CAS  PubMed  Google Scholar 

  64. Golicki, D. et al. Leflunomide in monotherapy of rheumatoid arthritis: meta-analysis of randomized trials. Pol. Arch. Med. Wewn. 122, 22–32 (2012).

    CAS  PubMed  Google Scholar 

  65. Hong, S. K., Tsang, M. & Dawid, I. B. The mych gene is required for neural crest survival during zebrafish development. PLoS ONE 3, e2029 (2008).

    PubMed  PubMed Central  Google Scholar 

  66. Ridges, S. et al. Zebrafish screen identifies novel compound with selective toxicity against leukemia. Blood 119, 5621–5631 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Parant, J. M., George, S. A., Holden, J. A. & Yost, H. J. Genetic modeling of Li-Fraumeni syndrome in zebrafish. Dis. Model. Mech. 3, 45–56 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Zhang, G. et al. Highly aneuploid zebrafish malignant peripheral nerve sheath tumors have genetic alterations similar to human cancers. Proc. Natl Acad. Sci. USA 107, 16940–16945 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Amsterdam, A. et al. Identification of 315 genes essential for early zebrafish development. Proc. Natl Acad. Sci. USA 101, 12792–12797 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Amsterdam, A. et al. Many ribosomal protein genes are cancer genes in zebrafish. PLoS Biol. 2, E139 (2004).

    PubMed  PubMed Central  Google Scholar 

  71. Lai, K. et al. Many ribosomal protein mutations are associated with growth impairment and tumor predisposition in zebrafish. Dev. Dyn. 238, 76–85 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Guertin, D. A. & Sabatini, D. M. Defining the role of mTOR in cancer. Cancer Cell 12, 9–22 (2007).

    CAS  PubMed  Google Scholar 

  73. Amsterdam, A. et al. Zebrafish Hagoromo mutants up-regulate fgf8 postembryonically and develop neuroblastoma. Mol. Cancer Res. 7, 841–850 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Hanahan, D. & Weinberg, R. A. The hallmarks of cancer. Cell 100, 57–70 (2000).

    CAS  PubMed  Google Scholar 

  75. Hanahan, D. & Weinberg, R. A. Hallmarks of cancer: the next generation. Cell 144, 646–674 (2011).

    CAS  PubMed  Google Scholar 

  76. Moore, J. L., Rush, L. M., Breneman, C., Mohideen, M. A. & Cheng, K. C. Zebrafish genomic instability mutants and cancer susceptibility. Genetics 174, 585–600 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Neumann, J. C., Dovey, J. S., Chandler, G. L., Carbajal, L. & Amatruda, J. F. Identification of a heritable model of testicular germ cell tumor in the zebrafish. Zebrafish 6, 319–327 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Shepard, J. L. et al. A zebrafish bmyb mutation causes genome instability and increased cancer susceptibility. Proc. Natl Acad. Sci. USA 102, 13194–13199 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Shepard, J. L. et al. A mutation in separase causes genome instability and increased susceptibility to epithelial cancer. Genes Dev. 21, 55–59 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Neumann, J. C. et al. Mutation in the type IB bone morphogenetic protein receptor Alk6b impairs germ-cell differentiation and causes germ-cell tumors in zebrafish. Proc. Natl Acad. Sci. USA 108, 13153–13158 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Frazer, J. K. et al. Heritable T-cell malignancy models established in a zebrafish phenotypic screen. Leukemia 23, 1825–1835 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Miller, A. C., Obholzer, N. D., Shah, A. N., Megason, S. G. & Moens, C. B. RNA-seq-based mapping and candidate identification of mutations from forward genetic screens. Genome Res. 23, 679–686 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Hill, J. T. et al. MMAPPR: mutation mapping analysis pipeline for pooled RNA-seq. Genome Res. 23, 687–697 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Bowen, M. E., Henke, K., Siegfried, K. R., Warman, M. L. & Harris, M. P. Efficient mapping and cloning of mutations in zebrafish by low-coverage whole-genome sequencing. Genetics 190, 1017–1024 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. McGrail, M. et al. Somatic mutagenesis with a Sleeping Beauty transposon system leads to solid tumor formation in zebrafish. PLoS ONE 6, e18826 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Bedell, V. M. et al. In vivo genome editing using a high-efficiency TALEN system. Nature 491, 114–118 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Dahlem, T. J. et al. Simple methods for generating and detecting locus-specific mutations induced with TALENs in the zebrafish genome. PLoS Genet. 8, e1002861 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. De Rienzo, G., Gutzman, J. H. & Sive, H. Efficient shRNA-mediated inhibition of gene expression in zebrafish. Zebrafish 9, 97–107 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Premsrirut, P. K. et al. A rapid and scalable system for studying gene function in mice using conditional RNA interference. Cell 145, 145–158 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Shih, A. H., Abdel-Wahab, O., Patel, J. P. & Levine, R. L. The role of mutations in epigenetic regulators in myeloid malignancies. Nature Rev. Cancer 12, 599–612 (2012).

    CAS  Google Scholar 

  91. Ganis, J. J. et al. Zebrafish globin switching occurs in two developmental stages and is controlled by the LCR. Dev. Biol. 366, 185–194 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Wu, S. F. et al. DNA methylation profiling in zebrafish. Methods Cell Biol. 104, 327–339 (2011).

    CAS  PubMed  Google Scholar 

  93. Goll, M. G. & Halpern, M. E. DNA methylation in zebrafish. Prog. Mol. Biol. Transl. Sci. 101, 193–218 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Wolchok, J. D. et al. Nivolumab plus ipilimumab in advanced melanoma. N. Engl. J. Med. 369, 122–133 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Hamid, O. et al. Safety and tumor responses with lambrolizumab (anti-PD-1) in melanoma. N. Engl. J. Med. 369, 134–144 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Feng, Y., Santoriello, C., Mione, M., Hurlstone, A. & Martin, P. Live imaging of innate immune cell sensing of transformed cells in zebrafish larvae: parallels between tumor initiation and wound inflammation. PLoS Biol. 8, e1000562 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Park, S. W. et al. Oncogenic KRAS induces progenitor cell expansion and malignant transformation in zebrafish exocrine pancreas. Gastroenterology 134, 2080–2090 (2008).

    PubMed  Google Scholar 

  98. Langenau, D. M. et al. Cre/lox-regulated transgenic zebrafish model with conditional myc-induced T cell acute lymphoblastic leukemia. Proc. Natl Acad. Sci. USA 102, 6068–6073 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Feng, H. et al. Heat-shock induction of T-cell lymphoma/leukaemia in conditional Cre/lox-regulated transgenic zebrafish. Br. J. Haematol. 138, 169–175 (2007).

    CAS  PubMed  Google Scholar 

  100. Chen, J. et al. NOTCH1-induced T-cell leukemia in transgenic zebrafish. Leukemia 21, 462–471 (2007).

    PubMed  Google Scholar 

  101. Blackburn, J. S. et al. Notch signaling expands a pre-malignant pool of T-cell acute lymphoblastic leukemia clones without affecting leukemia-propagating cell frequency. Leukemia 26, 2069–2078 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Le, X. et al. Heat shock-inducible Cre/Lox approaches to induce diverse types of tumors and hyperplasia in transgenic zebrafish. Proc. Natl Acad. Sci. USA 104, 9410–9415 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Ju, B., Spitsbergen, J., Eden, C. J., Taylor, M. R. & Chen, W. Co-activation of hedgehog and AKT pathways promote tumorigenesis in zebrafish. Mol. Cancer 8, 40 (2009).

    PubMed  PubMed Central  Google Scholar 

  104. Zhuravleva, J. et al. MOZ/TIF2-induced acute myeloid leukaemia in transgenic fish. Br. J. Haematol. 143, 378–382 (2008).

    CAS  PubMed  Google Scholar 

  105. Chu, C. Y. et al. Overexpression of Akt1 enhances adipogenesis and leads to lipoma formation in zebrafish. PLoS ONE 7, e36474 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Leacock, S. W. et al. A zebrafish transgenic model of Ewing's sarcoma reveals conserved mediators of EWS-FLI1 tumorigenesis. Dis. Model. Mech. 5, 95–106 (2012).

    CAS  PubMed  Google Scholar 

  107. Li, Z. et al. Inducible and repressable oncogene-addicted hepatocellular carcinoma in Tet-on xmrk transgenic zebrafish. J. Hepatol 56, 419–425 (2012).

    CAS  PubMed  Google Scholar 

  108. Yang, H. W. et al. Targeted expression of human MYCN selectively causes pancreatic neuroendocrine tumors in transgenic zebrafish. Cancer Res. 64, 7256–7262 (2004).

    CAS  PubMed  Google Scholar 

  109. Forrester, A. M. et al. NUP98-HOXA9-transgenic zebrafish develop a myeloproliferative neoplasm and provide new insight into mechanisms of myeloid leukaemogenesis. Br. J. Haematol. 155, 167–181 (2011).

    PubMed  Google Scholar 

  110. Liu, N. A. et al. Targeting zebrafish and murine pituitary corticotroph tumors with a cyclin-dependent kinase (CDK) inhibitor. Proc. Natl Acad. Sci. USA 108, 8414–8419 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. He, S. et al. Neutrophil-mediated experimental metastasis is enhanced by VEGFR inhibition in a zebrafish xenograft model. J. Pathol. 227, 431–445 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Richard White or Leonard Zon.

Ethics declarations

Competing interests

L.Z. is a founder and stockholder of Fate Therapeutics, and a founder and stockholder of Scholar Rock Inc., and a scientific adviser for Stemgent. R.W. and K.R. declare no competing financial interests.

PowerPoint slides

Glossary

Forward genetic screens

An approach in which germline mutations are induced by mutagens such as ethylnitrosourea and offspring are scored for phenotype of interest. The causal mutation is then identified in mutants with interesting phenotypes.

GISTIC

(Genomic identification of significant targets in cancer). An algorithm for the identification of copy number gains and losses in human cancer, using genome-wide data such as high-density single nucleotide polymorphism arrays.

Caudal haematopoietic tissue

(CHT). A region of the zebrafish embryo that acts as an intermediate site of embryonic blood development.

TILLING

(Targeting induced local lesions in genomes). A technique to identify specific mutations in a gene of interest. Unbiased mutagenesis of the genome using ethylnitrosourea is carried out, followed by PCR-based sequencing of the region of interest to identify zebrafish with the preferred mutation.

Li–Fraumeni syndrome

An autosomal-dominant condition caused by an inherited mutation in p53 that renders humans highly susceptible to a number of cancers, including breast cancer, leukaemia and sarcoma.

CRISPR–Cas

Clustered regularly interspaced short palindromic repeat (CRISPR)–CRISPR-associated (Cas).

miR-30-based approaches

A technique for improving the efficiency of in vivo RNA interference. A short hairpin RNA against a gene of interest is embedded within an endogenous microRNA-30 (miR-30) backbone, which allows for high-level expression from RNA polymerase II promoters.

Rights and permissions

Reprints and permissions

About this article

Cite this article

White, R., Rose, K. & Zon, L. Zebrafish cancer: the state of the art and the path forward. Nat Rev Cancer 13, 624–636 (2013). https://doi.org/10.1038/nrc3589

Download citation

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nrc3589

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer