Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Third universal definition of myocardial infarction

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: This illustration shows various clinical entities—renal failure, heart failure, tachyarrhythmia or bradyarrhythmia, cardiac or noncardiac procedures—that can be associated with myocardial injury with cell death marked by cardiac troponin elevation.
Figure 2: Differentiation between MI types 1 and 2 according to the condition of the coronary arteries.

References

  1. The Joint European Society of Cardiology/American College of Cardiology Committee. Myocardial infarction redefined—a consensus document of the Joint European Society of Cardiology/American College of Cardiology Committee for the redefinition of myocardial infarction. Eur. Heart J. 21, 1502–1513; J. Am. Coll. Cardiol. 36, 959–969 (2000).

  2. Thygesen, K., Alpert, J. S., White, H. D., Joint ESC/ACCF/AHA/WHF Task Force for the Redefinition of Myocardial Infarction. Universal definition of myocardial infarction. Eur. Heart J. 28, 2525–2538; Circulation 116, 2634–2653; J. Am. Coll. Cardiol. 50, 2173–2195 (2007).

    PubMed  Google Scholar 

  3. Mendis, S. et al. on behalf of the participating experts of the WHO consultation for revision of WHO definition of myocardial infarction. World Health Organization definition of myocardial infarction: 2008–09 revision. Int. J. Epidemiol. 40, 139–146 (2011).

    PubMed  Google Scholar 

  4. Jennings, R. B. & Ganote, C. E. Structural changes in myocardium during acute ischemia. Circ. Res. 35 (Suppl. 3), 156–172 (1974).

    PubMed  Google Scholar 

  5. Jaffe, A. S., Babuin, L. & Apple, F. S. Biomarkers in acute cardiac disease. J. Am. Coll. Cardiol. 48, 1–11 (2006).

    CAS  PubMed  Google Scholar 

  6. White, H. D. Pathobiology of troponin elevations. J. Am. Coll. Cardiol. 57, 2406–2408 (2011).

    CAS  PubMed  Google Scholar 

  7. Jaffe, A. S. Chasing troponin: how low can you go if you can see the rise? J. Am. Coll. Cardiol. 48, 1763–1764 (2006).

    PubMed  Google Scholar 

  8. Apple, F. S., Jesse, R. L., Newby, L. K., Wu, A. H. B. & Christenson, R. H. National Academy of Clinical Biochemistry and IFCC Committee for Standardization of Markers Cardiac Damage Laboratory Medicine Practice Guidelines: analytical issues for biochemical markers of acute coronary syndromes. Circulation 115, e352–e355 (2007).

    PubMed  Google Scholar 

  9. Morrow, D. A. et al. National Academy of Clinical Biochemistry Laboratory Medicine Practice Guidelines: clinical characteristics and utilization of biochemical markers of acute coronary syndromes. Circulation 115, e356–e375 (2007).

    PubMed  Google Scholar 

  10. Thygesen, K. et al. Recommendations for the use of cardiac troponin measurement in acute cardiac care. Eur. Heart J. 31, 2197–2204 (2010).

    CAS  PubMed  Google Scholar 

  11. Thygesen, K. et al. How to use high-sensitivity cardiac troponins in acute cardiac care. Eur. Heart J. http://dx.doi.org/10.1093/eurheartj/ehs154.

  12. Apple, F. S., Collinson, P. O. & IFCC Task Force on Clinical Applications of Cardiac Biomarkers. Analytical characteristics of high-sensitivity cardiac troponin assays. Clin. Chem. 58, 54–61 (2012).

    CAS  PubMed  Google Scholar 

  13. Jaffe, A. S., Apple, F. S., Morrow, D. A., Lindahl, B. & Katus, H. A. Being rational about (im)precision: a statement from the Biochemistry Subcommittee of the Joint European Society of Cardiology/American College of Cardiology Foundation/American Heart Association/World Heart Federation Task Force for the definition of myocardial infarction. Clin. Chem. 56, 941–943 (2010).

    CAS  PubMed  Google Scholar 

  14. MacRae, A. R. et al. Assessing the requirement for the six-hour interval between specimens in the American Heart Association classification of myocardial infarction in epidemiology and clinical research studies. Clin. Chem. 52, 812–818 (2006).

    CAS  PubMed  Google Scholar 

  15. de Lemos, J. A. et al. Association of troponin T detected with a highly sensitive assay and cardiac structure and mortality risk in the general population. JAMA 304, 2503–2512 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Omland, T. et al. A sensitive cardiac troponin T assay in stable coronary artery disease. N. Engl. J. Med. 361, 2538–2547 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Mills, N. L. et al. Implementation of a sensitive troponin I assay and risk of recurrent myocardial infarction and death in patients with suspected acute coronary syndrome. JAMA 305, 1210–1216 (2011).

    CAS  PubMed  Google Scholar 

  18. Saunders, J. T. et al. Cardiac troponin T measured by a highly sensitive assay predicts coronary heart disease, heart failure, and mortality in the atherosclerosis risk in communities study. Circulation 123, 1367–1376 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Kavsak, P. A., Xu, L., Yusuf, S. & McQueen, M. J. High-sensitivity cardiac troponin I measurement for risk stratification in a stable high-risk population. Clin. Chem. 57, 1146–1153 (2011).

    CAS  PubMed  Google Scholar 

  20. Apple, F. S., Simpson, P. A. & Murakami, M. M. Defining the serum 99th percentile in a normal reference population measured by a high-sensitivity cardiac troponin I assay. Clin. Biochem. 43, 1034–1036 (2010).

    CAS  PubMed  Google Scholar 

  21. Giannitsis, E. et al. Analytical validation of a high-sensitivity cardiac troponin T assay. Clin. Chem. 56, 254–261 (2010).

    CAS  PubMed  Google Scholar 

  22. Apple, F. S., Quist, H. E., Doyle, P. J., Otto, A. P. & Murakami, M. M. Plasma 99th percentile reference limits for cardiac troponin and creatine kinase MB mass for use with European Society of Cardiology/American College of Cardiology consensus recommendations. Clin. Chem. 49, 1331–1336 (2003).

    CAS  PubMed  Google Scholar 

  23. Roe, M. T. et al. Clinical and therapeutic profile of patients presenting with acute coronary syndromes who do not have significant coronary artery disease. The Platelet glycoprotein IIb/IIIa in Unstable angina: Receptor Suppression Using Integrilin Therapy (PURSUIT) trial investigators. Circulation 102, 1101–1106 (2000).

    CAS  PubMed  Google Scholar 

  24. Bugiardini, R., Manfrini, O. & De Ferrari, G. M. Unanswered questions for management of acute coronary syndrome: risk stratification of patients with minimal disease or normal findings on coronary angiography. Arch. Intern. Med. 166, 1391–1395 (2006).

    PubMed  Google Scholar 

  25. Reynolds, H. R. et al. Mechanisms of myocardial infarction in women without angiographically obstructive coronary artery disease. Circulation 124, 1414–1425 (2011).

    PubMed  PubMed Central  Google Scholar 

  26. Bertrand, M. E. et al. Frequency of provoked coronary arterial spasm in 1089 consecutive patients undergoing coronary arteriography. Circulation 65, 1299–1306 (1982).

    CAS  PubMed  Google Scholar 

  27. Suwaidi, J. A. et al. Long-term follow-up of patients with mild coronary artery disease and endothelial dysfunction. Circulation 101, 948–954 (2000).

    CAS  PubMed  Google Scholar 

  28. Bugiardini, R., Manfrini, O., Pizzi, C., Fontana, F. & Morgagni, G. Endothelial function predicts future development of coronary artery disease: a study on women with chest pain and normal angiograms. Circulation 109, 2518–2523 (2004).

    PubMed  Google Scholar 

  29. Harris, B. M., Nageh, T., Marsden, J. T., Thomas, M. R. & Sherwood, R. A. Comparison of cardiac troponin T and I and CK-MB for the detection of minor myocardial damage during interventional cardiac procedures. Ann. Clin. Biochem. 37, 764–769 (2000).

    CAS  PubMed  Google Scholar 

  30. Januzzi, J. L. et al. A comparison of cardiac troponin T and creatine kinase-MB for patient evaluation after cardiac surgery. J. Am. Coll. Cardiol. 39, 1518–1523 (2002).

    CAS  PubMed  Google Scholar 

  31. Holmvang, L. et al. Use of biochemical markers of infarction for diagnosing perioperative myocardial infarction and early graft occlusion after coronary artery bypass surgery. Chest 121, 103–111 (2002).

    CAS  PubMed  Google Scholar 

  32. Miller, W. L., Garratt, K. N., Burritt, M. F., Reeder, G. S. & Jaffe, A. S. Timing of peak troponin T and creatine kinase-MB elevations after percutaneous coronary intervention. Chest 25, 275–280 (2004).

    Google Scholar 

  33. Lansky, A. J. & Stone, G. W. Periprocedural myocardial infarction: prevalence, prognosis, and prevention. Circ. Cardiovasc. Interv. 3, 602–610 (2010).

    PubMed  Google Scholar 

  34. Cavallini, C. et al. Prognostic value of isolated troponin I elevation after percutaneous coronary intervention. Circ. Cardiovasc. Interv. 3, 431–435 (2010).

    CAS  PubMed  Google Scholar 

  35. Prasad, A. Jr. et al. Significance of periprocedural myonecrosis on outcomes following percutaneous coronary intervention. Circ. Cardiovasc. Interv. 1, 10–19 (2008).

    PubMed  Google Scholar 

  36. Zimetbaum, P. J. & Josephson, M. E. Use of the electrocardiogram in acute myocardial infarction. N. Engl. J. Med. 348, 933–940 (2003).

    PubMed  Google Scholar 

  37. Wang, K., Asinger, R. W. & Marriott, H. J. ST-segment elevation in conditions other than acute myocardial infarction. N. Engl. J. Med. 349, 2128–2135 (2003).

    CAS  PubMed  Google Scholar 

  38. Mcfarlane, P. W. Age, sex, and the ST amplitude in health and disease. J. Electrocardiol. 34 (Suppl.), S35–S41 (2001).

    Google Scholar 

  39. Zimetbaum, P. J., Krishnan, S., Gold, A., Carrozza, J. P. 2nd & Josephson, M. E. Usefulness of ST-segment elevation in lead III exceeding that of lead II for identifying the location of the totally occluded coronary artery in inferior wall myocardial infarction. Am. J. Cardiol. 81, 918–919 (1998).

    CAS  PubMed  Google Scholar 

  40. Engelen, D. J. et al. Value of the electrocardiogram in localizing the occlusion site in the left anterior descending coronary artery in acute anterior myocardial infarction. J. Am. Coll. Cardiol. 34, 389–395 (1999).

    CAS  PubMed  Google Scholar 

  41. Matetzky, S. et al. Acute myocardial infarction with isolated ST-segment elevation in posterior chest leads V7–V9. Hidden ST-segment elevations revealing acute posterior infarction. J. Am. Coll. Cardiol. 34, 748–753 (1999).

    CAS  PubMed  Google Scholar 

  42. Lopez-Sendon, J., Coma-Canella, I., Alcasena, S., Seoane, J. & Gamallo, C. Electrocardiographic findings in acute right ventricular infarction: sensitivity and specificity of electrocardiographic alterations in right precordial leads V4R, V3R, V1, V2 and V3 . J. Am. Coll. Cardiol. 6, 1273–1279 (1985).

    CAS  PubMed  Google Scholar 

  43. Bayés de Luna, A. et al. A new terminology for the left ventricular walls and for the location of myocardial infarcts that present Q. wave based on the standard of cardiac magnetic resonance imaging. A statement for healthcare professionals from a Committee appointed by the International Society for Holter and Noninvasive Electrocardiography. Circulation 114, 1755–1760 (2006).

    PubMed  Google Scholar 

  44. Sgarbossa, E. B. et al. Electrocardiographic diagnosis of evolving acute myocardial infarction in the presence of left bundle branch block. N. Engl. J. Med. 334, 481–487 (1996).

    CAS  PubMed  Google Scholar 

  45. Jain, S. et al. Utility of left bundle branch block as a diagnostic criterion for acute myocardial infarction. Am. J. Cardiol. 107, 1111–1116 (2011).

    PubMed  Google Scholar 

  46. Savage, R. M., Wagner, G. S., Ideker, R. E., Podolsky, S. A. & Hackel, D. B. Correlation of postmortem anatomic findings with electrocardiographic changes in patients with myocardial infarction: retrospective study of patients with typical anterior and posterior infarcts. Circulation 55, 279–285 (1977).

    CAS  PubMed  Google Scholar 

  47. Horan, L. G., Flowers, N. C. & Johnson, J. C. Significance of the diagnostic Q wave of myocardial infarction. Circulation 43, 428–436 (1971).

    CAS  PubMed  Google Scholar 

  48. Chaitman, B. R. et al. The Bypass Angioplasty Revascularization Investigation 2 Diabetes randomized trial of different treatment strategies in type 2 diabetes mellitus with stable ischemic heart disease: impact of treatment strategy on cardiac mortality and myocardial infarction. Circulation 120, 2529–2540 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Burgess, D. C. et al. Incidence and predictors of silent myocardial infarction in type 2 diabetes and the effect of fenofibrate: an analysis from the Fenofibrate Intervention and Event Lowering in Diabetes (FIELD) study. Eur. Heart J. 31, 92–99 (2010).

    PubMed  Google Scholar 

  50. Sheifer, S. E., Manolio, T. A. & Gersh, B. J. Unrecognized myocardial infarction. Ann. Intern. Med. 135, 801–811 (2001).

    CAS  PubMed  Google Scholar 

  51. Toma, M. et al. Does silent myocardial infarction add prognostic value in ST-elevation myocardial infarction? Insights from the Assessment of Pexelizumab in Acute Myocardial Infarction (APEX-AMI) trial. Am. Heart J. 160, 671–677 (2010).

    PubMed  Google Scholar 

  52. Stillman, A. E. et al. Assessment of acute myocardial infarction: current status and recommendations from the North American Society for Cardiovascular Imaging and the European Society of Cardiac Radiology. Int. J. Cardiovasc. Imaging 27, 7–24 (2011).

    PubMed  Google Scholar 

  53. Flachskampf, F. A. et al. Cardiac imaging after myocardial infarction. Eur. Heart J. 32, 272–283 (2011).

    PubMed  Google Scholar 

  54. Kaul, S. et al. A suggested roadmap for cardiovascular ultrasound research for the future. J. Am. Soc. Echocardiogr. 24, 455–464 (2011).

    PubMed  Google Scholar 

  55. Carrio, I., Cowie, M. R., Yamazaki, J., Udelson, J. & Camici, P. G. Cardiac sympathetic imaging with mIBG in heart failure. JACC Imaging 3, 92–100 (2010).

    Google Scholar 

  56. Nahrendorf, M. et al. Multimodality cardiovascular molecular imaging, part II. Circ. Cardiovasc. Imaging 2, 56–70 (2009).

    PubMed  PubMed Central  Google Scholar 

  57. Kramer, C. M., Sinusas, A. J., Sosnovik, D. E., French, B. A. & Bengel, F. M. Multimodality imaging of myocardial injury and remodeling. J. Nucl. Med. 51 (Suppl. 1), 107S–121S (2010).

    PubMed  Google Scholar 

  58. Taegtmeyer, H. Tracing cardiac metabolism in vivo: one substrate at a time. J. Nucl. Med. 51 (Suppl. 1), 80S–87S (2010).

    CAS  PubMed  Google Scholar 

  59. Kim, H. W., Faraneh-Far, A. & Kim, R. J. Cardiovascular magnetic resonance in patients with myocardial infarction. J. Am. Coll. Cardiol. 55, 1–16 (2010).

    Google Scholar 

  60. Beek, A. M. & van Rossum, A. C. Cardiovascular magnetic resonance imaging in patients with acute myocardial infarction. Heart 96, 237–243 (2010).

    PubMed  Google Scholar 

  61. Assomull, R. G. et al. The role of cardiovascular magnetic resonance in patients presenting with chest pain, raised troponin, and unobstructed coronary arteries. Eur. Heart J. 28, 1242–1249 (2007).

    CAS  PubMed  Google Scholar 

  62. Schuleri, K. H., George, R. T. & Lardo, A. C. Assessment of coronary blood flow with computed tomography and magnetic resonance imaging. J. Nucl. Cardiol. 17, 582–590 (2010).

    PubMed  Google Scholar 

  63. Amsterdam, E. A. et al. Testing of low-risk patients presenting to the emergency department with chest pain. Circulation 122, 1756–1776 (2010).

    PubMed  PubMed Central  Google Scholar 

  64. Gibbons, R. J., Valeti, U. S., Araoz, P. A. & Jaffe, A. S. The quantification of infarct size. J. Am. Coll. Cardiol. 44, 1533–1542 (2004).

    PubMed  Google Scholar 

  65. Herrman, J. Peri-procedural myocardial injury: 2005 update. Eur. Heart J. 26, 2493–2519 (2005).

    Google Scholar 

  66. Selvanayagam, J. B. et al. Troponin elevation after percutaneous coronary intervention directly represents the extent of irreversible myocardial injury: insights from cardiovascular magnetic resonance imaging. Circulation 111, 1027–1032 (2005).

    CAS  PubMed  Google Scholar 

  67. Gustavsson, C. G., Hansen, O. & Frennby, B. Troponin must be measured before and after PCI to diagnose procedure-related myocardial injury. Scand. Cardiovasc. J. 38, 75–79 (2004).

    CAS  PubMed  Google Scholar 

  68. Miller, W. L. et al. Baseline troponin level: key to understanding the importance of post-PCI troponin elevations. Eur. Heart J. 27, 1061–1069 (2006).

    CAS  PubMed  Google Scholar 

  69. Califf, R. M. et al. Myonecrosis after revascularization procedures. J. Am. Coll. Cardiol. 31, 241–251 (1998).

    CAS  PubMed  Google Scholar 

  70. White, H. D. The prequel. Defining prognostically important criteria in the periprocedural PCI troponin saga. Circ. Cardiovasc. Interv. 5, 142–145 (2012).

    PubMed  Google Scholar 

  71. Jaffe, A. S., Apple, F. S., Lindahl, B., Mueller, C. & Katus, H. A. Why all the struggle about CK-MB and PCI? Eur. Heart J. 33, 1046–1048 (2012).

    PubMed  Google Scholar 

  72. Damman, P. et al. Long-term cardiovascular mortality after procedure-related or spontaneous myocardial infarction in patients with non-ST-segment elevation acute coronary syndrome: a collaborative analysis of individual patient data from the FRISC II, ICTUS, and RITA-3 trials (FIR). Circulation 125, 568–576 (2012).

    PubMed  Google Scholar 

  73. Bonaca, M. P. et al. American College of Cardiology/American Heart Association/European Society of Cardiology/World Heart Federation Universal Definition of Myocardial Infarction Classification System and the risk of cardiovascular death: observations from the TRITON-TIMI 38 trial (Trial to Assess Improvement in Therapeutic Outcomes by Optimizing Platelet Inhibition With Prasugrel—Thrombolysis in Myocardial Infarction 38). Circulation 125, 577–583 (2012).

    PubMed  Google Scholar 

  74. Cutlip, D. E. et al. Clinical end points in coronary stent trials: a case for standardized definitions. Circulation 115, 2344–2351 (2007).

    PubMed  Google Scholar 

  75. Benoit, M. O., Paris, M., Silleran, J., Fiemeyer, A. & Moatti, N. Cardiac troponin I: its contribution to the diagnosis of perioperative myocardial infarction and various complications of cardiac surgery. Crit. Care Med. 29, 1880–1886 (2001).

    CAS  PubMed  Google Scholar 

  76. Kovacevic, R. et al. Troponin T levels in detection of perioperative myocardial infarction after coronary artery bypass surgery. Clin. Lab. 50, 437–445 (2004).

    CAS  PubMed  Google Scholar 

  77. Noora, J., Ricci, C., Hastings, D., Hills, S. & Cybulsky, I. Determination of troponin I release after CABG surgery. J. Card. Surg. 20, 129–135 (2005).

    PubMed  Google Scholar 

  78. Selvanayagam, J. B. et al. Relationship of irreversible myocardial injury to troponin I and creatine kinase-MB elevation after coronary artery bypass surgery: insights from cardiovascular magnetic resonance imaging. J. Am. Coll. Cardiol. 45, 629–631 (2005).

    PubMed  Google Scholar 

  79. Costa, M. A. et al. Incidence, predictors, and significance of abnormal cardiac enzyme rise in patients treated with bypass surgery in the Arterial Revascularization Therapies Study (ARTS). Circulation 104, 2689–2693 (2001).

    CAS  PubMed  Google Scholar 

  80. Klatte, K. et al. Increased mortality after coronary artery bypass graft surgery is associated with increased levels of postoperative creatine kinase-myocardial band isoenzyme release. J. Am. Coll. Cardiol. 38, 1070–1077 (2001).

    CAS  PubMed  Google Scholar 

  81. Brener, S. J., Lytle, B. W., Schneider, J. P., Ellis, S. G. & Topol, E. J. Association between CK-MB elevation after percutaneous or surgical revascularization and three-year mortality. J. Am. Coll. Cardiol. 40, 1961–1967 (2002).

    CAS  PubMed  Google Scholar 

  82. Domanski, M. et al. Association of myocardial enzyme elevation and survival following coronary artery bypass graft surgery. JAMA 305, 585–589 (2011).

    CAS  PubMed  Google Scholar 

  83. Croal, B. L. et al. Relationship between postoperative cardiac troponin I levels and outcome of cardiac surgery. Circulation 114, 1468–1475 (2006).

    CAS  PubMed  Google Scholar 

  84. Selvanayagam, J. B. et al. Effects of off-pump versus on-pump coronary surgery on reversible and irreversible myocardial injury: a randomized trial using cardiovascular magnetic resonance imaging and biochemical markers. Circulation 109, 345–350 (2004).

    PubMed  Google Scholar 

  85. Leon, M. B. et al. Standardized endpoint definitions for transcatheter aortic valve implantation clinical trials: a consensus report from the Valve Academic Research Consortium. Eur. Heart J. 32, 205–217; J. Am. Coll. Cardiol. 57, 253–269 (2011).

    PubMed  Google Scholar 

  86. Devereaux, P. J. et al. Characteristics and short-term prognosis of perioperative myocardial infarction in patients undergoing noncardiac surgery: a cohort study. Ann. Intern. Med. 154, 523–528 (2011).

    CAS  PubMed  Google Scholar 

  87. The Vascular Events in Noncardiac Surgery Patients Cohort Evaluation (VISION) Study Investigators. Association between postoperative troponin levels and 30-day mortality among patients undergoing noncardiac surgery. JAMA 307, 2295–2304 (2012).

  88. Kavsak, P. A. et al. High sensitivity troponin T concentrations in patients undergoing noncardiac surgery: a prospective cohort study. Clin. Biochem. 44, 1021–1024 (2011).

    CAS  PubMed  Google Scholar 

  89. Fleisher, L. A., Nelson, A. H. & Rosenbaum, S. H. Postoperative myocardial ischemia: etiology of cardiac morbidity or manifestation of underlying disease? J. Clin. Anesth. 7, 97–102 (1995).

    CAS  PubMed  Google Scholar 

  90. Landesberg, G. et al. Cardiac troponin after major vascular surgery: the role of perioperative ischemia, preoperative thallium scanning, and coronary revascularization. J. Am. Coll. Cardiol. 44, 569–575 (2004).

    CAS  PubMed  Google Scholar 

  91. Cohen, M. C. & Aretz, T. H. Histological analysis of coronary artery lesions in fatal postoperative myocardial infarction. Cardiovasc. Pathol. 8, 133–139 (1999).

    CAS  PubMed  Google Scholar 

  92. Guest, T. M. et al. Myocardial injury in critically ill medical patients: a surprisingly frequent complication. JAMA 273, 1945–1949 (1995).

    CAS  PubMed  Google Scholar 

  93. Babuin, L. et al. Elevated cardiac troponin is an independent risk factor for short- and long-term mortality in medical intensive care unit patients. Crit. Care Med. 36, 759–765 (2008).

    CAS  PubMed  Google Scholar 

  94. Landesberg, G. et al. Myocardial ischemia, cardiac troponin, and long-term survival of high-cardiac risk critically ill intensive care unit patients. Crit. Care Med. 33, 1281–1287 (2005).

    CAS  PubMed  Google Scholar 

  95. Thygesen, K., Alpert, J. S., Jaffe, A. S. & White, H. D. Diagnostic application of the universal definition of myocardial infarction in the intensive care unit. Curr. Opin. Crit. Care 14, 543–548 (2008).

    PubMed  Google Scholar 

  96. Kociol, R. D. et al. Troponin elevation in heart failure prevalence, mechanisms, and clinical implications. J. Am. Coll. Cardiol. 56, 1071–1078 (2010).

    CAS  PubMed  Google Scholar 

  97. Januzzi, J. L. Jr, Filippatos, G., Nieminen, M. & Gheorghiade, M. Troponin elevation in patients with heart failure: on behalf of the Third Universal Task Force for the Definition of Myocardial Infarction Global Task Force: Heart Failure Section. Eur. Heart J. http://dx.doi.org/10.1093/eurheartj/ehs191.

  98. Miller, W. L., Hartman, K. A., Burritt, M. F., Grill, D. E. & Jaffe, A. S. Profiles of serial changes in cardiac troponin T concentrations and outcome in ambulatory patients with chronic heart failure. J. Am. Coll. Cardiol. 54, 1715–1721 (2009).

    CAS  PubMed  Google Scholar 

  99. Dangas, G. D. et al. In-stent restenosis in the drug-eluting era. J. Am. Coll. Cardiol. 56, 1897–1907 (2010).

    PubMed  Google Scholar 

  100. White, H. D. et al. Reinfarction after percutaneous coronary intervention or medical management using the universal definition in patients with total occlusion after myocardial infarction: results from long-term follow-up of the Occluded Artery Trial (OAT) cohort. Am. Heart J. 163, 563–571 (2012).

    PubMed  PubMed Central  Google Scholar 

  101. Rosamond, W. et al. Twenty-two year trends in incidence of myocardial infarction, CHD mortality, and case-fatality in four US communities, 1987 to 2008. Circulation 125, 1848–1857 (2012).

    PubMed  PubMed Central  Google Scholar 

  102. Luepker, R., Duval, S., Jacobs, D., Smith, L. & Berger, A. The effect of changing diagnostic algorithms on acute myocardial infarction rates. Ann. Epidemiol. 21, 824–829 (2011).

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Task Force members: Chairpersons: Kristian Thygesen (Denmark), Joseph S. Alpert (USA), Harvey D. White (New Zealand). Biomarker Subcommittee: Allan S. Jaffe (USA), Hugo A. Katus (Germany), Fred S. Apple (USA), Bertil Lindahl (Sweden), David A. Morrow (USA). ECG Subcommittee: Bernard R. Chaitman (USA), Peter M. Clemmensen (Denmark), Per Johanson (Sweden), Hanoch Hod (Israel). Imaging Subcommittee: Richard Underwood (UK), Jeroen J. Bax (The Netherlands), Robert O. Bonow (USA), Fausto Pinto (Portugal), Raymond J. Gibbons (USA). Classification Subcommittee: Keith A. Fox (UK), Dan Atar (Norway), L. Kristin Newby (USA), Marcello Galvani (Italy), Christian W. Hamm (Germany). Intervention Subcommittee: Barry F. Uretsky (USA), Ph. Gabriel Steg (France), William Wijns (Belgium), Jean-Pierre Bassand (France), Phillippe Menasché (France), Jan Ravkilde (Denmark). Trials & Registries Subcommittee: E. Magnus Ohman (USA), Elliott M. Antman (USA), Lars C. Wallentin (Sweden), Paul W. Armstrong (Canada), Maarten L. Simoons (The Netherlands). Heart Failure Subcommittee: James L. Januzzi (USA), Markku S. Nieminen (Finland), Mihai Gheorghiade (USA), Gerasimos Filippatos (Greece). Epidemiology Subcommittee: Russell V. Luepker (USA), Stephen P. Fortmann (USA), Wayne D. Rosamond (USA), Dan Levy (USA), David Wood (UK). Global Perspective Subcommittee: Sidney C. Smith (USA), Dayi Hu (China), José-Luis Lopez-Sendon (Spain), Rose Marie Robertson (USA), Douglas Weaver (USA), Michal Tendera (Poland), Alfred A. Bove (USA), Alexander N. Parkhomenko (Ukraine), Elena J. Vasilieva (Russia), Shanti Mendis (Switzerland).

ESC Committee for Practice Guidelines (CPG): Jeroen J. Bax, (CPG Chairperson) (Netherlands), Helmut Baumgartner (Germany), Claudio Ceconi (Italy), Veronica Dean (France), Christi Deaton (UK), Robert Fagard (Belgium), Christian Funck-Brentano (France), David Hasdai (Israel), Arno Hoes (Netherlands), Paulus Kirchhof (Germany/UK), Juhani Knuuti (Finland), Philippe Kolh (Belgium), Theresa McDonagh (UK), Cyril Moulin (France), Bogdan A. Popescu (Romania), Željko Reiner (Croatia), Udo Sechtem (Germany), Per Anton Sirnes (Norway), Michal Tendera (Poland), Adam Torbicki (Poland), Alec Vahanian (France), Stephan Windecker (Switzerland).

Document Reviewers: Joao Morais, (CPG Review Coordinator) (Portugal), Carlos Aguiar (Portugal), Wael Almahmeed (United Arab Emirates), David O. Arnar (Iceland), Fabio Barili (Italy), Kenneth D. Bloch (USA), Ann F. Bolger (USA), Hans Erik Bøtker (Denmark), Biykem Bozkurt (USA), Raffaele Bugiardini (Italy), Christopher Cannon (USA), James de Lemos (USA), Franz R. Eberli (Switzerland), Edgardo Escobar (Chile), Mark Hlatky (USA), Stefan James (Sweden), Karl B. Kern (USA), David J. Moliterno (USA), Christian Mueller (Switzerland), Aleksandar N. Neskovic (Serbia), Burkert Mathias Pieske (Austria), Steven P. Schulman (USA), Robert F. Storey (UK), Kathryn A. Taubert (Switzerland), Pascal Vranckx (Belgium), Daniel R. Wagner (Luxembourg).

We are very grateful to the dedicated staff of the Practice Guidelines Department of the ESC.

Author information

Authors and Affiliations

Authors

Consortia

Corresponding authors

Correspondence to Kristian Thygesen, Joseph S. Alpert or Harvey D. White.

Ethics declarations

Competing interests

The members of the Task Force of the ESC, the ACCF, the AHA and the WHF have participated independently in the preparation of this document, drawing on their academic and clinical experience and applying an objective and clinical examination of all available literature. Most have undertaken—and are undertaking—work in collaboration with industry and governmental or private health providers (research studies, teaching conferences, consultation), but all believe such activities have not influenced their judgment. The best guarantee of their independence is in the quality of their past and current scientific work. However, to ensure openness, their relationships with industry, government and private health providers are reported as supplementary information online (www.nature.com/nrcardio). Expenses for the Task Force/Writing Committee and preparation of this document were provided entirely by the above-mentioned joint associations.

Supplementary information

Supplementary information

Relationships with industry (DOC 191 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thygesen, K., Alpert, J., Jaffe, A. et al. Third universal definition of myocardial infarction. Nat Rev Cardiol 9, 620–633 (2012). https://doi.org/10.1038/nrcardio.2012.122

Download citation

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nrcardio.2012.122

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research