This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 print issues and online access
$189.00 per year
only $15.75 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout


References
The Joint European Society of Cardiology/American College of Cardiology Committee. Myocardial infarction redefined—a consensus document of the Joint European Society of Cardiology/American College of Cardiology Committee for the redefinition of myocardial infarction. Eur. Heart J. 21, 1502–1513; J. Am. Coll. Cardiol. 36, 959–969 (2000).
Thygesen, K., Alpert, J. S., White, H. D., Joint ESC/ACCF/AHA/WHF Task Force for the Redefinition of Myocardial Infarction. Universal definition of myocardial infarction. Eur. Heart J. 28, 2525–2538; Circulation 116, 2634–2653; J. Am. Coll. Cardiol. 50, 2173–2195 (2007).
Mendis, S. et al. on behalf of the participating experts of the WHO consultation for revision of WHO definition of myocardial infarction. World Health Organization definition of myocardial infarction: 2008–09 revision. Int. J. Epidemiol. 40, 139–146 (2011).
Jennings, R. B. & Ganote, C. E. Structural changes in myocardium during acute ischemia. Circ. Res. 35 (Suppl. 3), 156–172 (1974).
Jaffe, A. S., Babuin, L. & Apple, F. S. Biomarkers in acute cardiac disease. J. Am. Coll. Cardiol. 48, 1–11 (2006).
White, H. D. Pathobiology of troponin elevations. J. Am. Coll. Cardiol. 57, 2406–2408 (2011).
Jaffe, A. S. Chasing troponin: how low can you go if you can see the rise? J. Am. Coll. Cardiol. 48, 1763–1764 (2006).
Apple, F. S., Jesse, R. L., Newby, L. K., Wu, A. H. B. & Christenson, R. H. National Academy of Clinical Biochemistry and IFCC Committee for Standardization of Markers Cardiac Damage Laboratory Medicine Practice Guidelines: analytical issues for biochemical markers of acute coronary syndromes. Circulation 115, e352–e355 (2007).
Morrow, D. A. et al. National Academy of Clinical Biochemistry Laboratory Medicine Practice Guidelines: clinical characteristics and utilization of biochemical markers of acute coronary syndromes. Circulation 115, e356–e375 (2007).
Thygesen, K. et al. Recommendations for the use of cardiac troponin measurement in acute cardiac care. Eur. Heart J. 31, 2197–2204 (2010).
Thygesen, K. et al. How to use high-sensitivity cardiac troponins in acute cardiac care. Eur. Heart J. http://dx.doi.org/10.1093/eurheartj/ehs154.
Apple, F. S., Collinson, P. O. & IFCC Task Force on Clinical Applications of Cardiac Biomarkers. Analytical characteristics of high-sensitivity cardiac troponin assays. Clin. Chem. 58, 54–61 (2012).
Jaffe, A. S., Apple, F. S., Morrow, D. A., Lindahl, B. & Katus, H. A. Being rational about (im)precision: a statement from the Biochemistry Subcommittee of the Joint European Society of Cardiology/American College of Cardiology Foundation/American Heart Association/World Heart Federation Task Force for the definition of myocardial infarction. Clin. Chem. 56, 941–943 (2010).
MacRae, A. R. et al. Assessing the requirement for the six-hour interval between specimens in the American Heart Association classification of myocardial infarction in epidemiology and clinical research studies. Clin. Chem. 52, 812–818 (2006).
de Lemos, J. A. et al. Association of troponin T detected with a highly sensitive assay and cardiac structure and mortality risk in the general population. JAMA 304, 2503–2512 (2010).
Omland, T. et al. A sensitive cardiac troponin T assay in stable coronary artery disease. N. Engl. J. Med. 361, 2538–2547 (2009).
Mills, N. L. et al. Implementation of a sensitive troponin I assay and risk of recurrent myocardial infarction and death in patients with suspected acute coronary syndrome. JAMA 305, 1210–1216 (2011).
Saunders, J. T. et al. Cardiac troponin T measured by a highly sensitive assay predicts coronary heart disease, heart failure, and mortality in the atherosclerosis risk in communities study. Circulation 123, 1367–1376 (2011).
Kavsak, P. A., Xu, L., Yusuf, S. & McQueen, M. J. High-sensitivity cardiac troponin I measurement for risk stratification in a stable high-risk population. Clin. Chem. 57, 1146–1153 (2011).
Apple, F. S., Simpson, P. A. & Murakami, M. M. Defining the serum 99th percentile in a normal reference population measured by a high-sensitivity cardiac troponin I assay. Clin. Biochem. 43, 1034–1036 (2010).
Giannitsis, E. et al. Analytical validation of a high-sensitivity cardiac troponin T assay. Clin. Chem. 56, 254–261 (2010).
Apple, F. S., Quist, H. E., Doyle, P. J., Otto, A. P. & Murakami, M. M. Plasma 99th percentile reference limits for cardiac troponin and creatine kinase MB mass for use with European Society of Cardiology/American College of Cardiology consensus recommendations. Clin. Chem. 49, 1331–1336 (2003).
Roe, M. T. et al. Clinical and therapeutic profile of patients presenting with acute coronary syndromes who do not have significant coronary artery disease. The Platelet glycoprotein IIb/IIIa in Unstable angina: Receptor Suppression Using Integrilin Therapy (PURSUIT) trial investigators. Circulation 102, 1101–1106 (2000).
Bugiardini, R., Manfrini, O. & De Ferrari, G. M. Unanswered questions for management of acute coronary syndrome: risk stratification of patients with minimal disease or normal findings on coronary angiography. Arch. Intern. Med. 166, 1391–1395 (2006).
Reynolds, H. R. et al. Mechanisms of myocardial infarction in women without angiographically obstructive coronary artery disease. Circulation 124, 1414–1425 (2011).
Bertrand, M. E. et al. Frequency of provoked coronary arterial spasm in 1089 consecutive patients undergoing coronary arteriography. Circulation 65, 1299–1306 (1982).
Suwaidi, J. A. et al. Long-term follow-up of patients with mild coronary artery disease and endothelial dysfunction. Circulation 101, 948–954 (2000).
Bugiardini, R., Manfrini, O., Pizzi, C., Fontana, F. & Morgagni, G. Endothelial function predicts future development of coronary artery disease: a study on women with chest pain and normal angiograms. Circulation 109, 2518–2523 (2004).
Harris, B. M., Nageh, T., Marsden, J. T., Thomas, M. R. & Sherwood, R. A. Comparison of cardiac troponin T and I and CK-MB for the detection of minor myocardial damage during interventional cardiac procedures. Ann. Clin. Biochem. 37, 764–769 (2000).
Januzzi, J. L. et al. A comparison of cardiac troponin T and creatine kinase-MB for patient evaluation after cardiac surgery. J. Am. Coll. Cardiol. 39, 1518–1523 (2002).
Holmvang, L. et al. Use of biochemical markers of infarction for diagnosing perioperative myocardial infarction and early graft occlusion after coronary artery bypass surgery. Chest 121, 103–111 (2002).
Miller, W. L., Garratt, K. N., Burritt, M. F., Reeder, G. S. & Jaffe, A. S. Timing of peak troponin T and creatine kinase-MB elevations after percutaneous coronary intervention. Chest 25, 275–280 (2004).
Lansky, A. J. & Stone, G. W. Periprocedural myocardial infarction: prevalence, prognosis, and prevention. Circ. Cardiovasc. Interv. 3, 602–610 (2010).
Cavallini, C. et al. Prognostic value of isolated troponin I elevation after percutaneous coronary intervention. Circ. Cardiovasc. Interv. 3, 431–435 (2010).
Prasad, A. Jr. et al. Significance of periprocedural myonecrosis on outcomes following percutaneous coronary intervention. Circ. Cardiovasc. Interv. 1, 10–19 (2008).
Zimetbaum, P. J. & Josephson, M. E. Use of the electrocardiogram in acute myocardial infarction. N. Engl. J. Med. 348, 933–940 (2003).
Wang, K., Asinger, R. W. & Marriott, H. J. ST-segment elevation in conditions other than acute myocardial infarction. N. Engl. J. Med. 349, 2128–2135 (2003).
Mcfarlane, P. W. Age, sex, and the ST amplitude in health and disease. J. Electrocardiol. 34 (Suppl.), S35–S41 (2001).
Zimetbaum, P. J., Krishnan, S., Gold, A., Carrozza, J. P. 2nd & Josephson, M. E. Usefulness of ST-segment elevation in lead III exceeding that of lead II for identifying the location of the totally occluded coronary artery in inferior wall myocardial infarction. Am. J. Cardiol. 81, 918–919 (1998).
Engelen, D. J. et al. Value of the electrocardiogram in localizing the occlusion site in the left anterior descending coronary artery in acute anterior myocardial infarction. J. Am. Coll. Cardiol. 34, 389–395 (1999).
Matetzky, S. et al. Acute myocardial infarction with isolated ST-segment elevation in posterior chest leads V7–V9. Hidden ST-segment elevations revealing acute posterior infarction. J. Am. Coll. Cardiol. 34, 748–753 (1999).
Lopez-Sendon, J., Coma-Canella, I., Alcasena, S., Seoane, J. & Gamallo, C. Electrocardiographic findings in acute right ventricular infarction: sensitivity and specificity of electrocardiographic alterations in right precordial leads V4R, V3R, V1, V2 and V3 . J. Am. Coll. Cardiol. 6, 1273–1279 (1985).
Bayés de Luna, A. et al. A new terminology for the left ventricular walls and for the location of myocardial infarcts that present Q. wave based on the standard of cardiac magnetic resonance imaging. A statement for healthcare professionals from a Committee appointed by the International Society for Holter and Noninvasive Electrocardiography. Circulation 114, 1755–1760 (2006).
Sgarbossa, E. B. et al. Electrocardiographic diagnosis of evolving acute myocardial infarction in the presence of left bundle branch block. N. Engl. J. Med. 334, 481–487 (1996).
Jain, S. et al. Utility of left bundle branch block as a diagnostic criterion for acute myocardial infarction. Am. J. Cardiol. 107, 1111–1116 (2011).
Savage, R. M., Wagner, G. S., Ideker, R. E., Podolsky, S. A. & Hackel, D. B. Correlation of postmortem anatomic findings with electrocardiographic changes in patients with myocardial infarction: retrospective study of patients with typical anterior and posterior infarcts. Circulation 55, 279–285 (1977).
Horan, L. G., Flowers, N. C. & Johnson, J. C. Significance of the diagnostic Q wave of myocardial infarction. Circulation 43, 428–436 (1971).
Chaitman, B. R. et al. The Bypass Angioplasty Revascularization Investigation 2 Diabetes randomized trial of different treatment strategies in type 2 diabetes mellitus with stable ischemic heart disease: impact of treatment strategy on cardiac mortality and myocardial infarction. Circulation 120, 2529–2540 (2009).
Burgess, D. C. et al. Incidence and predictors of silent myocardial infarction in type 2 diabetes and the effect of fenofibrate: an analysis from the Fenofibrate Intervention and Event Lowering in Diabetes (FIELD) study. Eur. Heart J. 31, 92–99 (2010).
Sheifer, S. E., Manolio, T. A. & Gersh, B. J. Unrecognized myocardial infarction. Ann. Intern. Med. 135, 801–811 (2001).
Toma, M. et al. Does silent myocardial infarction add prognostic value in ST-elevation myocardial infarction? Insights from the Assessment of Pexelizumab in Acute Myocardial Infarction (APEX-AMI) trial. Am. Heart J. 160, 671–677 (2010).
Stillman, A. E. et al. Assessment of acute myocardial infarction: current status and recommendations from the North American Society for Cardiovascular Imaging and the European Society of Cardiac Radiology. Int. J. Cardiovasc. Imaging 27, 7–24 (2011).
Flachskampf, F. A. et al. Cardiac imaging after myocardial infarction. Eur. Heart J. 32, 272–283 (2011).
Kaul, S. et al. A suggested roadmap for cardiovascular ultrasound research for the future. J. Am. Soc. Echocardiogr. 24, 455–464 (2011).
Carrio, I., Cowie, M. R., Yamazaki, J., Udelson, J. & Camici, P. G. Cardiac sympathetic imaging with mIBG in heart failure. JACC Imaging 3, 92–100 (2010).
Nahrendorf, M. et al. Multimodality cardiovascular molecular imaging, part II. Circ. Cardiovasc. Imaging 2, 56–70 (2009).
Kramer, C. M., Sinusas, A. J., Sosnovik, D. E., French, B. A. & Bengel, F. M. Multimodality imaging of myocardial injury and remodeling. J. Nucl. Med. 51 (Suppl. 1), 107S–121S (2010).
Taegtmeyer, H. Tracing cardiac metabolism in vivo: one substrate at a time. J. Nucl. Med. 51 (Suppl. 1), 80S–87S (2010).
Kim, H. W., Faraneh-Far, A. & Kim, R. J. Cardiovascular magnetic resonance in patients with myocardial infarction. J. Am. Coll. Cardiol. 55, 1–16 (2010).
Beek, A. M. & van Rossum, A. C. Cardiovascular magnetic resonance imaging in patients with acute myocardial infarction. Heart 96, 237–243 (2010).
Assomull, R. G. et al. The role of cardiovascular magnetic resonance in patients presenting with chest pain, raised troponin, and unobstructed coronary arteries. Eur. Heart J. 28, 1242–1249 (2007).
Schuleri, K. H., George, R. T. & Lardo, A. C. Assessment of coronary blood flow with computed tomography and magnetic resonance imaging. J. Nucl. Cardiol. 17, 582–590 (2010).
Amsterdam, E. A. et al. Testing of low-risk patients presenting to the emergency department with chest pain. Circulation 122, 1756–1776 (2010).
Gibbons, R. J., Valeti, U. S., Araoz, P. A. & Jaffe, A. S. The quantification of infarct size. J. Am. Coll. Cardiol. 44, 1533–1542 (2004).
Herrman, J. Peri-procedural myocardial injury: 2005 update. Eur. Heart J. 26, 2493–2519 (2005).
Selvanayagam, J. B. et al. Troponin elevation after percutaneous coronary intervention directly represents the extent of irreversible myocardial injury: insights from cardiovascular magnetic resonance imaging. Circulation 111, 1027–1032 (2005).
Gustavsson, C. G., Hansen, O. & Frennby, B. Troponin must be measured before and after PCI to diagnose procedure-related myocardial injury. Scand. Cardiovasc. J. 38, 75–79 (2004).
Miller, W. L. et al. Baseline troponin level: key to understanding the importance of post-PCI troponin elevations. Eur. Heart J. 27, 1061–1069 (2006).
Califf, R. M. et al. Myonecrosis after revascularization procedures. J. Am. Coll. Cardiol. 31, 241–251 (1998).
White, H. D. The prequel. Defining prognostically important criteria in the periprocedural PCI troponin saga. Circ. Cardiovasc. Interv. 5, 142–145 (2012).
Jaffe, A. S., Apple, F. S., Lindahl, B., Mueller, C. & Katus, H. A. Why all the struggle about CK-MB and PCI? Eur. Heart J. 33, 1046–1048 (2012).
Damman, P. et al. Long-term cardiovascular mortality after procedure-related or spontaneous myocardial infarction in patients with non-ST-segment elevation acute coronary syndrome: a collaborative analysis of individual patient data from the FRISC II, ICTUS, and RITA-3 trials (FIR). Circulation 125, 568–576 (2012).
Bonaca, M. P. et al. American College of Cardiology/American Heart Association/European Society of Cardiology/World Heart Federation Universal Definition of Myocardial Infarction Classification System and the risk of cardiovascular death: observations from the TRITON-TIMI 38 trial (Trial to Assess Improvement in Therapeutic Outcomes by Optimizing Platelet Inhibition With Prasugrel—Thrombolysis in Myocardial Infarction 38). Circulation 125, 577–583 (2012).
Cutlip, D. E. et al. Clinical end points in coronary stent trials: a case for standardized definitions. Circulation 115, 2344–2351 (2007).
Benoit, M. O., Paris, M., Silleran, J., Fiemeyer, A. & Moatti, N. Cardiac troponin I: its contribution to the diagnosis of perioperative myocardial infarction and various complications of cardiac surgery. Crit. Care Med. 29, 1880–1886 (2001).
Kovacevic, R. et al. Troponin T levels in detection of perioperative myocardial infarction after coronary artery bypass surgery. Clin. Lab. 50, 437–445 (2004).
Noora, J., Ricci, C., Hastings, D., Hills, S. & Cybulsky, I. Determination of troponin I release after CABG surgery. J. Card. Surg. 20, 129–135 (2005).
Selvanayagam, J. B. et al. Relationship of irreversible myocardial injury to troponin I and creatine kinase-MB elevation after coronary artery bypass surgery: insights from cardiovascular magnetic resonance imaging. J. Am. Coll. Cardiol. 45, 629–631 (2005).
Costa, M. A. et al. Incidence, predictors, and significance of abnormal cardiac enzyme rise in patients treated with bypass surgery in the Arterial Revascularization Therapies Study (ARTS). Circulation 104, 2689–2693 (2001).
Klatte, K. et al. Increased mortality after coronary artery bypass graft surgery is associated with increased levels of postoperative creatine kinase-myocardial band isoenzyme release. J. Am. Coll. Cardiol. 38, 1070–1077 (2001).
Brener, S. J., Lytle, B. W., Schneider, J. P., Ellis, S. G. & Topol, E. J. Association between CK-MB elevation after percutaneous or surgical revascularization and three-year mortality. J. Am. Coll. Cardiol. 40, 1961–1967 (2002).
Domanski, M. et al. Association of myocardial enzyme elevation and survival following coronary artery bypass graft surgery. JAMA 305, 585–589 (2011).
Croal, B. L. et al. Relationship between postoperative cardiac troponin I levels and outcome of cardiac surgery. Circulation 114, 1468–1475 (2006).
Selvanayagam, J. B. et al. Effects of off-pump versus on-pump coronary surgery on reversible and irreversible myocardial injury: a randomized trial using cardiovascular magnetic resonance imaging and biochemical markers. Circulation 109, 345–350 (2004).
Leon, M. B. et al. Standardized endpoint definitions for transcatheter aortic valve implantation clinical trials: a consensus report from the Valve Academic Research Consortium. Eur. Heart J. 32, 205–217; J. Am. Coll. Cardiol. 57, 253–269 (2011).
Devereaux, P. J. et al. Characteristics and short-term prognosis of perioperative myocardial infarction in patients undergoing noncardiac surgery: a cohort study. Ann. Intern. Med. 154, 523–528 (2011).
The Vascular Events in Noncardiac Surgery Patients Cohort Evaluation (VISION) Study Investigators. Association between postoperative troponin levels and 30-day mortality among patients undergoing noncardiac surgery. JAMA 307, 2295–2304 (2012).
Kavsak, P. A. et al. High sensitivity troponin T concentrations in patients undergoing noncardiac surgery: a prospective cohort study. Clin. Biochem. 44, 1021–1024 (2011).
Fleisher, L. A., Nelson, A. H. & Rosenbaum, S. H. Postoperative myocardial ischemia: etiology of cardiac morbidity or manifestation of underlying disease? J. Clin. Anesth. 7, 97–102 (1995).
Landesberg, G. et al. Cardiac troponin after major vascular surgery: the role of perioperative ischemia, preoperative thallium scanning, and coronary revascularization. J. Am. Coll. Cardiol. 44, 569–575 (2004).
Cohen, M. C. & Aretz, T. H. Histological analysis of coronary artery lesions in fatal postoperative myocardial infarction. Cardiovasc. Pathol. 8, 133–139 (1999).
Guest, T. M. et al. Myocardial injury in critically ill medical patients: a surprisingly frequent complication. JAMA 273, 1945–1949 (1995).
Babuin, L. et al. Elevated cardiac troponin is an independent risk factor for short- and long-term mortality in medical intensive care unit patients. Crit. Care Med. 36, 759–765 (2008).
Landesberg, G. et al. Myocardial ischemia, cardiac troponin, and long-term survival of high-cardiac risk critically ill intensive care unit patients. Crit. Care Med. 33, 1281–1287 (2005).
Thygesen, K., Alpert, J. S., Jaffe, A. S. & White, H. D. Diagnostic application of the universal definition of myocardial infarction in the intensive care unit. Curr. Opin. Crit. Care 14, 543–548 (2008).
Kociol, R. D. et al. Troponin elevation in heart failure prevalence, mechanisms, and clinical implications. J. Am. Coll. Cardiol. 56, 1071–1078 (2010).
Januzzi, J. L. Jr, Filippatos, G., Nieminen, M. & Gheorghiade, M. Troponin elevation in patients with heart failure: on behalf of the Third Universal Task Force for the Definition of Myocardial Infarction Global Task Force: Heart Failure Section. Eur. Heart J. http://dx.doi.org/10.1093/eurheartj/ehs191.
Miller, W. L., Hartman, K. A., Burritt, M. F., Grill, D. E. & Jaffe, A. S. Profiles of serial changes in cardiac troponin T concentrations and outcome in ambulatory patients with chronic heart failure. J. Am. Coll. Cardiol. 54, 1715–1721 (2009).
Dangas, G. D. et al. In-stent restenosis in the drug-eluting era. J. Am. Coll. Cardiol. 56, 1897–1907 (2010).
White, H. D. et al. Reinfarction after percutaneous coronary intervention or medical management using the universal definition in patients with total occlusion after myocardial infarction: results from long-term follow-up of the Occluded Artery Trial (OAT) cohort. Am. Heart J. 163, 563–571 (2012).
Rosamond, W. et al. Twenty-two year trends in incidence of myocardial infarction, CHD mortality, and case-fatality in four US communities, 1987 to 2008. Circulation 125, 1848–1857 (2012).
Luepker, R., Duval, S., Jacobs, D., Smith, L. & Berger, A. The effect of changing diagnostic algorithms on acute myocardial infarction rates. Ann. Epidemiol. 21, 824–829 (2011).
Acknowledgements
Task Force members: Chairpersons: Kristian Thygesen (Denmark), Joseph S. Alpert (USA), Harvey D. White (New Zealand). Biomarker Subcommittee: Allan S. Jaffe (USA), Hugo A. Katus (Germany), Fred S. Apple (USA), Bertil Lindahl (Sweden), David A. Morrow (USA). ECG Subcommittee: Bernard R. Chaitman (USA), Peter M. Clemmensen (Denmark), Per Johanson (Sweden), Hanoch Hod (Israel). Imaging Subcommittee: Richard Underwood (UK), Jeroen J. Bax (The Netherlands), Robert O. Bonow (USA), Fausto Pinto (Portugal), Raymond J. Gibbons (USA). Classification Subcommittee: Keith A. Fox (UK), Dan Atar (Norway), L. Kristin Newby (USA), Marcello Galvani (Italy), Christian W. Hamm (Germany). Intervention Subcommittee: Barry F. Uretsky (USA), Ph. Gabriel Steg (France), William Wijns (Belgium), Jean-Pierre Bassand (France), Phillippe Menasché (France), Jan Ravkilde (Denmark). Trials & Registries Subcommittee: E. Magnus Ohman (USA), Elliott M. Antman (USA), Lars C. Wallentin (Sweden), Paul W. Armstrong (Canada), Maarten L. Simoons (The Netherlands). Heart Failure Subcommittee: James L. Januzzi (USA), Markku S. Nieminen (Finland), Mihai Gheorghiade (USA), Gerasimos Filippatos (Greece). Epidemiology Subcommittee: Russell V. Luepker (USA), Stephen P. Fortmann (USA), Wayne D. Rosamond (USA), Dan Levy (USA), David Wood (UK). Global Perspective Subcommittee: Sidney C. Smith (USA), Dayi Hu (China), José-Luis Lopez-Sendon (Spain), Rose Marie Robertson (USA), Douglas Weaver (USA), Michal Tendera (Poland), Alfred A. Bove (USA), Alexander N. Parkhomenko (Ukraine), Elena J. Vasilieva (Russia), Shanti Mendis (Switzerland).
ESC Committee for Practice Guidelines (CPG): Jeroen J. Bax, (CPG Chairperson) (Netherlands), Helmut Baumgartner (Germany), Claudio Ceconi (Italy), Veronica Dean (France), Christi Deaton (UK), Robert Fagard (Belgium), Christian Funck-Brentano (France), David Hasdai (Israel), Arno Hoes (Netherlands), Paulus Kirchhof (Germany/UK), Juhani Knuuti (Finland), Philippe Kolh (Belgium), Theresa McDonagh (UK), Cyril Moulin (France), Bogdan A. Popescu (Romania), Željko Reiner (Croatia), Udo Sechtem (Germany), Per Anton Sirnes (Norway), Michal Tendera (Poland), Adam Torbicki (Poland), Alec Vahanian (France), Stephan Windecker (Switzerland).
Document Reviewers: Joao Morais, (CPG Review Coordinator) (Portugal), Carlos Aguiar (Portugal), Wael Almahmeed (United Arab Emirates), David O. Arnar (Iceland), Fabio Barili (Italy), Kenneth D. Bloch (USA), Ann F. Bolger (USA), Hans Erik Bøtker (Denmark), Biykem Bozkurt (USA), Raffaele Bugiardini (Italy), Christopher Cannon (USA), James de Lemos (USA), Franz R. Eberli (Switzerland), Edgardo Escobar (Chile), Mark Hlatky (USA), Stefan James (Sweden), Karl B. Kern (USA), David J. Moliterno (USA), Christian Mueller (Switzerland), Aleksandar N. Neskovic (Serbia), Burkert Mathias Pieske (Austria), Steven P. Schulman (USA), Robert F. Storey (UK), Kathryn A. Taubert (Switzerland), Pascal Vranckx (Belgium), Daniel R. Wagner (Luxembourg).
We are very grateful to the dedicated staff of the Practice Guidelines Department of the ESC.
Author information
Authors and Affiliations
Consortia
Corresponding authors
Ethics declarations
Competing interests
The members of the Task Force of the ESC, the ACCF, the AHA and the WHF have participated independently in the preparation of this document, drawing on their academic and clinical experience and applying an objective and clinical examination of all available literature. Most have undertaken—and are undertaking—work in collaboration with industry and governmental or private health providers (research studies, teaching conferences, consultation), but all believe such activities have not influenced their judgment. The best guarantee of their independence is in the quality of their past and current scientific work. However, to ensure openness, their relationships with industry, government and private health providers are reported as supplementary information online (www.nature.com/nrcardio). Expenses for the Task Force/Writing Committee and preparation of this document were provided entirely by the above-mentioned joint associations.
Supplementary information
Supplementary information
Relationships with industry (DOC 191 kb)
Rights and permissions
About this article
Cite this article
Thygesen, K., Alpert, J., Jaffe, A. et al. Third universal definition of myocardial infarction. Nat Rev Cardiol 9, 620–633 (2012). https://doi.org/10.1038/nrcardio.2012.122
Published:
Issue date:
DOI: https://doi.org/10.1038/nrcardio.2012.122
This article is cited by
-
Protective effects of 4-methylumbelliferone on myocardial ischemia/reperfusion injury in rats through inhibition of oxidative stress and downregulation of TLR4/NF-κB/NLRP3 signaling pathway
Naunyn-Schmiedeberg's Archives of Pharmacology (2024)
-
Red blood cell distribution width/platelet ratio on admission as a predictor for in-hospital mortality in patients with acute myocardial infarction: a retrospective analysis from MIMIC-IV Database
BMC Anesthesiology (2023)
-
Melatonin Attenuates Extracellular Matrix Accumulation and Cardiac Injury Manifested by Copper
Biological Trace Element Research (2023)
-
Clinical impact of blood pressure on cardiovascular death in patients 80 years and older following acute myocardial infarction: a prospective cohort study
Hypertension Research (2022)
-
Aib1 deficiency exacerbates inflammatory responses in acute myocardial infarction mice
Journal of Molecular Medicine (2022)