Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Revisiting the pathogenesis of rheumatic fever and carditis

Abstract

Rheumatic fever is one of the most-neglected ailments, and its pathogenesis remains poorly understood. The major thrust of research has been directed towards cross-reactivity between streptococcal M protein and myocardial α-helical coiled-coil proteins. M protein has also been the focus of vaccine development. The characteristic pathological findings suggest that the primary site of rheumatic-fever-related damage is subendothelial and perivascular connective tissue matrix and overlying endothelium. Over the past 5 years, a streptococcal M protein N-terminus domain has been shown to bind to the CB3 region in collagen type IV. This binding seems to initiate an antibody response to the collagen and result in ground substance inflammation. These antibodies do not cross-react with M proteins, and we believe that no failure of immune system and, possibly, no molecular mimicry occur in rheumatic fever. This alternative hypothesis shares similarity with collagen involvement in both Goodpasture syndrome and Alport syndrome.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Haematoxylin and eosin staining of the heart and vasculature suggests connective tissue involvement in rheumatic fever.
Figure 2: Molecular architecture of type IV collagen in healthy individuals and in patients with Goodpasture syndrome.
Figure 3: Molecular basis of an interaction between collagen type IV and M protein in rheumatic fever.
Figure 4: Proposed pathogenesis of rheumatic fever.

Similar content being viewed by others

References

  1. Reményi, B. et al. World Heart Federation criteria for echocardiographic diagnosis of rheumatic heart disease—an evidence-based guideline. Nat. Rev. Cardiol. 9, 297–309 (2012).

    Article  Google Scholar 

  2. World Health Organisation. Rheumatic fever and rheumatic heart disease. Report of a WHO expert consultation. WHO [online], (2004).

  3. Marijon, E. et al. Prevalence of rheumatic heart disease detected by echocardiographic screening. N. Engl. J. Med. 357, 470–476 (2007).

    Article  CAS  Google Scholar 

  4. Carapetis, J. R. et al. Evaluation of a screening protocol using auscultation and portable echocardiography to detect asymptomatic rheumatic heart disease in Tongan schoolchildren. Nat. Clin. Pract. Cardiovasc. Med. 5, 411–417 (2008).

    Article  Google Scholar 

  5. Stollerman, G. H. Rheumatogenic and nephritogenic streptococci. Circulation 43, 915–921 (1971).

    Article  CAS  Google Scholar 

  6. Virmani, R., Farb, A., Burke, A. P. & Narula, J. in Rheumatic Fever (eds Narula, J., Virmani, R., Reddy, K. S. & Tandon, R.) 217–234 (Amer. Reg. Path. AFIP, Washington DC, 1999).

    Google Scholar 

  7. Veasy, L. G. et al. Resurgence of acute rheumatic fever in the intermountain area of the United States. N. Engl. J. Med. 316, 421–427 (1987).

    Article  CAS  Google Scholar 

  8. Aschoff, L. The rheumatic nodules in the heart. Ann. Rheum. Dis. 1, 161–166 (1939).

    Article  CAS  Google Scholar 

  9. Saphir, O. The Aschoff nodule. Am. J. Clin. Pathol. 31, 534–539 (1959).

    Article  CAS  Google Scholar 

  10. Fischetti, V. A., Vashishta, A. & Pancholi, V. in Rheumatic Fever (eds Narula, J., Virmani, R., Reddy, K. S. & Tandon, R.) 113–134 (Amer. Reg. Path. AFIP, Washington DC, 1999).

    Google Scholar 

  11. Goldstein, I., Rebeyrotte, P., Parlebas, J. & Halpern, B. Isolation from heart valves of glycopeptides which share immunological properties with Streptococcus haemolyticus group A polysaccharides. Nature 219, 866–868 (1968).

    Article  CAS  Google Scholar 

  12. Dudding, B. A. & Ayoub, E. M. Persistence of streptococcal group A antibody in patients with rheumatic valvular disease. J. Exp. Med. 128, 1081–1098 (1968).

    Article  CAS  Google Scholar 

  13. Ayoub, E. M., Taranta, A. & Bartley, T. D. Effect of valvular surgery on antibody to the group A streptococcal carbohydrate. Circulation 50, 144–150 (1974).

    Article  CAS  Google Scholar 

  14. Galvin, J. E., Hemric, M. E., Ward, K. & Cunningham, M. W. Cytotoxic mAb from rheumatic carditis recognizes heart valves and laminin. J. Clin. Invest. 106, 217–224 (2000).

    Article  CAS  Google Scholar 

  15. Ellis, N. M. et al. Priming the immune system for heart disease: a perspective on group A streptococci. J. Infect. Dis. 202, 1059–1067 (2010).

    Article  CAS  Google Scholar 

  16. Gorton, D. E. et al. Cardiac myosin epitopes for monitoring progression of rheumatic fever. Pediatr. Infect. Dis. J. 30, 1015–1016 (2011).

    Article  Google Scholar 

  17. Kirvan, C. A., Swedo, S. E., Heuser, J. S. & Cunningham, M. W. Mimicry and autoantibody-mediated neuronal cell signaling in Sydenham chorea. Nat. Med. 9, 914–920 (2003).

    Article  CAS  Google Scholar 

  18. Ellis, N. M. et al. T cell mimicry and epitope specificity of cross-reactive T cell clones from rheumatic heart disease. J. Immunol. 175, 5448–5456 (2005).

    Article  CAS  Google Scholar 

  19. Faé, K. C. et al. Mimicry in recognition of cardiac myosin peptides by heart-intralesional T cell clones from rheumatic heart disease. J. Immunol. 176, 5662–5670 (2006).

    Article  Google Scholar 

  20. Roberts, S. et al. Pathogenic mechanisms in rheumatic carditis: focus on valvular endothelium. J. Infect. Dis. 183, 507–511 (2001).

    Article  CAS  Google Scholar 

  21. Gulizia, J. M. & McManus, B. M. in Rheumatic Fever (eds Narula, J., Virmani, R., Reddy, K. S. & Tandon, R.) 235–244 (Amer. Reg. Path. AFIP, Washington DC, 1999).

    Google Scholar 

  22. Narula, J. et al. Does endomyocardial biopsy aid in the diagnosis of active rheumatic carditis? Circulation 88, 2198–2205 (1993).

    Article  CAS  Google Scholar 

  23. Roberts, W. C. & Virmani, R. Aschoff bodies at necropsy in valvular heart disease. Evidence from an analysis of 543 patients over 14 years of age that rheumatic heart disease, at least anatomically, is a disease of mitral valve. Circulation 57, 803–807 (1978).

    Article  CAS  Google Scholar 

  24. Friedberg, C. K. Diseases of the Heart 4th edn 1322 (W. B. Saunders, Philadelphia, 1974).

    Google Scholar 

  25. Aretz, H. T. et al. Myocarditis: a histopathologic definition and classification. Am. J. Cardiovasc. Pathol. 1, 3–14 (1987).

    CAS  PubMed  Google Scholar 

  26. Narula, J., Narula, N., Southern, J. F. & Chopra, P. in Rheumatic Fever (eds Narula, J., Virmani, R., Reddy, K. S. & Tandon, R.) 319–328 (Amer. Reg. Path. AFIP, Washington DC, 1999).

    Google Scholar 

  27. Gupta, M., Lent, R. W., Kaplan, E. L. & Zabriskie, J. B. Serum cardiac troponin-I in acute rheumatic fever. Am. J. Cardiol. 89, 779–782 (2001).

    Article  Google Scholar 

  28. Vasan, R. S. et al. Echocardiographic, evaluation of patients with acute rheumatic fever and rheumatic carditis. Circulation 94, 73–82 (1996).

    Article  CAS  Google Scholar 

  29. Kinsley, R. H., Girdwood, R. W. & Milner, S. in Surgery Annual Vol. 13 (ed. Nyhus, L. M.) 299–323 (Appleton-Century-Crofts, New York, 1981).

    Google Scholar 

  30. Hudson, B. G., Tryggvason, K., Sundaramoorthy, M. & Neilson, E. G. Alport's syndrome, Goodpasture's syndrome and type IV collagen. N. Engl. J. Med. 348, 2543–2556 (2003).

    Article  CAS  Google Scholar 

  31. Pedchenko, V. et al. Molecular architecture of the Goodpasture autoantigen in anti-GBM nephritis. N. Engl. J. Med. 363, 343–354 (2010).

    Article  CAS  Google Scholar 

  32. Dinkla, K. et al. Rheumatic fever-associated Streptococcus pyogenes isolates aggregate collagen. J. Clin. Invest. 111, 1905–1912 (2003).

    Article  CAS  Google Scholar 

  33. Dinkla, K. et al. Identification of a streptococcal octapeptide motif involved in acute rheumatic fever. J. Biol. Chem. 282, 18686–18693 (2007).

    Article  CAS  Google Scholar 

  34. Dinkla, K. et al. Crucial role of the CB3-region of collagen IV in PARF-induced acute rheumatic fever. PLoS ONE 4, e4666 (2009).

    Article  Google Scholar 

  35. Nitsche, D. P., Johansson, H. M., Frick, I. M. & Mörgelin, M. Streptococcal protein FOG, a novel matrix adhesin interacting with collagen I in vivo. J. Biol. Chem. 281, 1670–1679 (2006).

    Article  CAS  Google Scholar 

  36. Barroso, V. et al. (2009). Identification of active variants of PARF in human pathogenic group C and group G streptococci leads to an amended description of its consensus motif. Int. J. Med. Microbiol. 299, 547–553 (2009).

    Article  CAS  Google Scholar 

  37. Aoudjit, F. & Vuori, K. Matrix attachment regulates Fas-induced apoptosis in endothelial cells: a role for c-flip and implications for anoikis. J. Cell Biol. 152, 633–643 (2001).

    Article  CAS  Google Scholar 

  38. Arid, W. C. Endothelial cell heterogeneity. Crit. Care Med. 31, S228–S230 (2003).

    Google Scholar 

  39. Butcher, J. T., Simmons, C. A. & Warnock, J. N. Mechanobiology of the aortic heart valve. J. Heart Valve Dis. 17, 62–73 (2008).

    PubMed  Google Scholar 

  40. Liu, A. C. & Gottlieb, A. I. in Molecular Pathology: The Molecular Basis of Human Disease Part IV, Chapter 14 (eds Coleman, W. & Tsongalis, G. J.) 228 (Academic Press, Madrid, 2009).

    Google Scholar 

  41. Janzer, R. C. & Raff, M. C. Astrocytes induce blood-brain barrier properties in endothelial cells. Nature 325, 253–257 (1987).

    Article  CAS  Google Scholar 

  42. Affara, M. et al. Understanding endothelial cell apoptosis: what can the transcriptome, glycome and proteome reveal? Philos. Trans. R. Soc. Lond. B Biol. Sci. 362, 1469–1487 (2007).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

R. Tandon, Y. Chandrashekhar, M. H. Yacoub and J. Narula researched data for the article, substantially contributed to discussion of content, wrote the manuscript, and reviewed/edited the manuscript. M. Sharma researched data for the article, substantially contributed to discussion of content, and wrote the manuscript. M. Kotb researched data for the article, substantially contributed to discussion of content, and reviewed/edited the manuscript.

Corresponding author

Correspondence to Jagat Narula.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tandon, R., Sharma, M., Chandrashekhar, Y. et al. Revisiting the pathogenesis of rheumatic fever and carditis. Nat Rev Cardiol 10, 171–177 (2013). https://doi.org/10.1038/nrcardio.2012.197

Download citation

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nrcardio.2012.197

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing