Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Correspondence
  • Published:

A lack of drugs for antibiotic-resistant Gram-negative bacteria

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: A sequence alignment of amino-acid residues near the H-9 (α9) and H-10 (α10) helix of class C β-lactamases with extended substrate spectrum.

Accession codes

Accessions

GenBank/EMBL/DDBJ

Protein Data Bank

References

  1. Payne, D. J., Gwynn, M. N., Holmes, D. J. & Pompliano, D. L. Drugs for bad bugs: confronting the challenges of antibacterial discovery. Nature Rev. Drug Discov. 6, 29–40 (2007).

    Article  CAS  Google Scholar 

  2. Bradley, J. S. et al. Anti-infective research and development-problems, challenges, and solutions. Lancet Infect. Dis. 7, 68–78 (2007).

    Article  Google Scholar 

  3. Talbot, G. H. et al. Bad bugs need drugs: an update on the development pipeline from the Antimicrobial Availability Task Force of the Infectious Diseases Society of America. Clin. Infect. Dis. 42, 657–668 (2006).

    Article  Google Scholar 

  4. Paterson, D. L. & Bonomo, R. A. Extended-spectrum β-lactamases: a clinical update. Clin. Microbiol. Rev. 18, 657–686 (2005).

    Article  CAS  Google Scholar 

  5. Mammeri, H. et al. AmpC β-lactamase in an Escherichia coli clinical isolate confers resistance to expanded-spectrum cephalosporins. Antimicrob. Agents Chemother. 48, 4050–4053 (2004).

    Article  CAS  Google Scholar 

  6. Mammeri, H., Poirel, L., Bemer, P., Drugeon, H. & Nordmann, P. Resistance to cefepime and cefpirome due to a 4-amino-acid deletion in the chromosome-encoded AmpC β-lactamase of a Serratia marcescens clinical isolate. Antimicrob. Agents Chemother. 48, 716–720 (2004).

    Article  CAS  Google Scholar 

  7. Kim, J. Y. et al. Structural basis for the extended substrate spectrum of CMY-10, a plasmid-encoded class C β-lactamase. Mol. Microbiol. 60, 907–916 (2006).

    Article  CAS  Google Scholar 

  8. Wachino, J. et al. Horizontal transfer of blaCMY-bearing plasmids among clinical Escherichia coli and Klebsiella pneumoniae isolates and emergence of cefepime-hydrolyzing CMY-19. Antimicrob. Agents Chemother. 50, 534–541 (2006).

    Article  CAS  Google Scholar 

  9. Poirel, L. et al. Emergence in Klebsiella pneumoniae of a chromosome-encoded SHV β-lactamase that compromises the efficacy of imipenem. Antimicrob. Agents Chemother. 47, 755–758 (2003).

    Article  CAS  Google Scholar 

  10. Lee, S. H., Jeong, S. H. & Cha, S. S. Screening for carbapenems-resistant Gram-negative bacteria. Lancet Infect. Dis. 6, 682–684 (2006).

    Article  Google Scholar 

  11. Lobkovsky, E. et al. Evolution of an enzyme activity: crystallographic structure at 2 Å resolution of cephalosporinase from the ampC gene of Enterobacter cloacae P99 and comparison with a class A penicillinase. Proc. Natl Acad. Sci. USA 90, 11257–11261 (1993).

    Article  CAS  Google Scholar 

  12. Crichlow, G. V. et al. Structure of the extended-spectrum class C β-lactamase of Enterobacter cloacae GC1, a natural mutant with a tandem tripeptide insertion. Biochemistry 38, 10256–10261 (1999).

    Article  CAS  Google Scholar 

  13. Anderson, A. C. The process of structure-based drug design. Chem. Biol. 10, 787–797 (2003).

    Article  CAS  Google Scholar 

  14. Powers, R. A., Morandi, F. & Shoichet, B. K. Structure-based discovery of a novel, noncovalent inhibitor of AmpC β-lactamase. Structure 10, 1013–1023 (2002).

    Article  CAS  Google Scholar 

  15. Fox, J. L. The business of developing antibacterials. Nature Biotech. 24, 1521–1528 (2006).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sang Hee Lee.

Ethics declarations

Competing interests

S.H.L. has received research grants from the National Institute of Health of KCDC in Republic of Korea, the beamline 6B and 6C of PLS supported by MOST and POSCO, the Driving Force Project for the Next Generation of Gyeonggi Provincial Government in Republic of Korea and the Second-Phase of Brain Korea 21 Project. S.S.C. has received a research grant from the 21C Frontier Functional Proteomics Center in Republic of Korea. S.H.J. has received a research grant from the Korea Research Foundation (KRF-2006-331-E00455). J.H.L. declares that he has no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, J., Jeong, S., Cha, SS. et al. A lack of drugs for antibiotic-resistant Gram-negative bacteria. Nat Rev Drug Discov 6, 938 (2007). https://doi.org/10.1038/nrd2201-c1

Download citation

  • Issue date:

  • DOI: https://doi.org/10.1038/nrd2201-c1

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing