Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Primer
  • Published:

Varicella zoster virus infection

Abstract

Infection with varicella zoster virus (VZV) causes varicella (chickenpox), which can be severe in immunocompromised individuals, infants and adults. Primary infection is followed by latency in ganglionic neurons. During this period, no virus particles are produced and no obvious neuronal damage occurs. Reactivation of the virus leads to virus replication, which causes zoster (shingles) in tissues innervated by the involved neurons, inflammation and cell death — a process that can lead to persistent radicular pain (postherpetic neuralgia). The pathogenesis of postherpetic neuralgia is unknown and it is difficult to treat. Furthermore, other zoster complications can develop, including myelitis, cranial nerve palsies, meningitis, stroke (vasculopathy), retinitis, and gastroenterological infections such as ulcers, pancreatitis and hepatitis. VZV is the only human herpesvirus for which highly effective vaccines are available. After varicella or vaccination, both wild-type and vaccine-type VZV establish latency, and long-term immunity to varicella develops. However, immunity does not protect against reactivation. Thus, two vaccines are used: one to prevent varicella and one to prevent zoster. In this Primer we discuss the pathogenesis, diagnosis, treatment, and prevention of VZV infections, with an emphasis on the molecular events that regulate these diseases. For an illustrated summary of this Primer, visit: http://go.nature.com/14xVI1

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Different phases of varicella zoster virus infection.
Figure 2: Epidemiology.
Figure 3: Clinical presentation of varicella with severe rash.
Figure 4: Latent and lytic infection.
Figure 5: Natural history and pathogenesis of zoster.
Figure 6: Antiviral treatment in VZV disease.
Figure 7: Mode of action of acyclovir.
Figure 8: Autophagosomes in VZV-infected cells.

Similar content being viewed by others

References

  1. Gilden, D., Cohrs, R. J., Mahalingam, R. & Nagel, M. A. Neurological disease produced by varicella zoster virus reactivation without rash. Curr. Top. Microbiol. Immunol. 342, 243–253 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Gershon, A. A. & Gershon, M. D. Pathogenesis and current approaches to control of varicella-zoster virus infections. Clin. Microbiol. Rev. 26, 728–743 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Gershon, A. A., Takahashi, M. & Seward, J. F. in Vaccines (eds Plotkin, S., Orenstein, W. & Offit, P. ) 915–958 (Saunders Elsevier, 2011).

    Google Scholar 

  4. Tsolia, M., Gershon, A. A., Steinberg, S. P. & Gelb, L. Live attenuated varicella vaccine: evidence that the virus is attenuated and the importance of skin lesions in transmission of varicella-zoster virus. National Institute of Allergy and Infectious Diseases Varicella Vaccine Collaborative Study Group. J. Pediatr. 116, 184–189 (1990). A study demonstrating that VZV spreads from skin lesions.

    Article  CAS  PubMed  Google Scholar 

  5. Chen, J. J., Zhu, Z., Gershon, A. A. & Gershon, M. D. Mannose 6-phosphate receptor dependence of varicella zoster virus infection in vitro and in the epidermis during varicella and zoster. Cell 119, 915–926 (2004). This study demonstrates the importance of the skin in VZV infection and identifies the cellular receptor that the virus uses for infection.

    Article  CAS  PubMed  Google Scholar 

  6. Weller, T. H. Varicella: historical perspective and clinical overview. J. Infect. Dis. 174 (Suppl.), S306–S309 (1996).

    Article  PubMed  Google Scholar 

  7. World Health Organization. Varicella and herpes zoster vaccines: WHO position paper, June 2014. Wkly Epidemiol. Rec. 89, 265–287 (2014).

    Google Scholar 

  8. Breuer, J., Grose, C., Norberg, P., Tipples, G. & Schmid, D. S. A proposal for a common nomenclature for viral clades that form the species varicella-zoster virus: summary of VZV Nomenclature Meeting 2008, Barts and the London School of Medicine and Dentistry, 24–25 July 2008. J. Gen. Virol. 91, 821–828 (2010). This paper describes the five different clades of VZV.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Marin, M., Güris, D., Chaves, S. S., Schmid, S. & Seward, J. F. Prevention of varicella: recommendations of the Advisory Committee on Immunization Practices (ACIP). MMWR. Recomm. Rep. 56, 1–40 (2007).

    PubMed  Google Scholar 

  10. Liyanage, N. P. M. et al. Seroprevalence of varicella zoster virus infections in Colombo district Sri Lanka. Indian J. Med. Sci. 61, 128–134 (2007).

    Article  CAS  PubMed  Google Scholar 

  11. Lolekha, S. et al. Effect of climatic factors and population density on varicella zoster virus epidemiology within a tropical country. Am. J. Trop. Med. Hyg. 64, 131–136 (2001).

    Article  CAS  PubMed  Google Scholar 

  12. Izurieta, H. S., Strebel, P. M. & Blake, P. A. Postlicensure effectiveness of varicella vaccine during an outbreak in a child care center. JAMA 278, 1495–1499 (1997).

    Article  CAS  PubMed  Google Scholar 

  13. Levy, M. H. et al. Pox in the docks: varicella outbreak in an Australian prison system. Publ. Health 117, 446–451 (2003).

    Article  Google Scholar 

  14. Longfield, J. N., Winn, R. E., Gibson, R. L., Juchau, S. V. & Hoffman, P. V. Varicella outbreaks in army recruits from Puerto Rico. Varicella susceptibility in a population from the tropics. Arch. Intern. Med. 150, 970–973 (1990).

    Article  CAS  PubMed  Google Scholar 

  15. Galil, K., Brown, C., Lin, F. & Seward, J. Hospitalizations for varicella in the United States, 1988 to 1999. Pediatr. Infect. Dis. J. 21, 931–935 (2002). This paper describes the effects of the varicella vaccine (decreased morbidity and mortality in the United States).

    Article  PubMed  Google Scholar 

  16. Rawson, H., Crampin, A. & Noah, N. Deaths from chickenpox in England and Wales 1995-7: analysis of routine mortality data. BMJ 323, 1091–1093 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Enders, G. Varicella-zoster virus infection in pregnancy. Prog. Med. Virol. 29, 166–196 (1984).

    CAS  PubMed  Google Scholar 

  18. Bialek, S. R. et al. Impact of a routine two-dose varicella vaccination program on varicella epidemiology. Pediatrics 132, e1134–e1140 (2013).

    Article  PubMed  Google Scholar 

  19. Marin, M., Zhang, J. X. & Seward, J. F. Near elimination of varicella deaths in the US after implementation of the vaccination program. Pediatrics 128, 214–220 (2011).

    Article  PubMed  Google Scholar 

  20. Hope-Simpson, R. E. The nature of herpes zoster: a long-term study and a new hypothesis. Proc. R. Soc. Med. 58, 9–20 (1965). This paper demonstrates the age-dependent incidence and severity of zoster and presents a hypothesis regarding the complex immune response to the virus.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Weitzman, D. et al. A population based study of the epidemiology of herpes zoster and its complications. J. Infect. 67, 463–469 (2013).

    Article  PubMed  Google Scholar 

  22. Oxman, M. N. et al. A vaccine to prevent herpes zoster and postherpetic neuralgia in older adults. N. Engl. J. Med. 352, 2271–2284 (2005). This article presents the first demonstration of a successful therapeutic vaccine against zoster.

    Article  CAS  PubMed  Google Scholar 

  23. Yawn, B. P. et al. A population-based study of the incidence and complication rates of herpes zoster before zoster vaccine introduction. Mayo Clin. Proc. 82, 1341–1349 (2007).

    Article  PubMed  Google Scholar 

  24. Forbes, H. J. et al. Quantification of risk factors for herpes zoster: population based case–control study. BMJ 348, g2911 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Schmader, K., George, L. K., Burchett, B. M., Pieper, C. F. & Hamilton, J. D. Racial differences in the occurrence of herpes zoster. J. Infect. Dis. 171, 701–704 (1995).

    Article  CAS  PubMed  Google Scholar 

  26. Arvin, A. M., Koropchak, C. M. & Wittek, A. E. Immunologic evidence of reinfection with varicella-zoster virus. J. Infect. Dis. 148, 200–205 (1983).

    Article  CAS  PubMed  Google Scholar 

  27. Thomas, S. L., Wheeler, J. G. & Hall, A. J. Contacts with varicella or with children and protection against herpes zoster in adults: a case–control study. Lancet 360, 678–682 (2002).

    Article  PubMed  Google Scholar 

  28. Brisson, M. et al. Modeling the impact of one- and two-dose varicella vaccination on the epidemiology of varicella and zoster. Vaccine 28, 3385–3397 (2010).

    Article  CAS  PubMed  Google Scholar 

  29. Hales, C. M., Harpaz, R., Joesoef, M. R. & Bialek, S. R. Examination of links between herpes zoster incidence and childhood varicella vaccination. Ann. Intern. Med. 159, 739–745 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Leung, J., Harpaz, R., Molinari, N.-A., Jumaan, A. & Zhou, F. Herpes zoster incidence among insured persons in the United States, 1993-2006: evaluation of impact of varicella vaccination. Clin. Infect. Dis. 52, 332–340 (2011).

    Article  PubMed  Google Scholar 

  31. Hardy, I., Gershon, A. A., Steinberg, S. P. & LaRussa, P. The incidence of zoster after immunization with live attenuated varicella vaccine. A study in children with leukemia. Varicella Vaccine Collaborative Study Group. N. Engl. J. Med. 325, 1545–1550 (1991). This article provides the first solid evidence that vaccination against varicella decreases the incidence of zoster.

    Article  CAS  PubMed  Google Scholar 

  32. Ku, C.-C., Padilla, J. A., Grose, C., Butcher, E. C. & Arvin, A. M. Tropism of varicella-zoster virus for human tonsillar CD4+ T lymphocytes that express activation, memory, and skin homing markers. J. Virol. 76, 11425–11433 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ku, C.-C. et al. Varicella-zoster virus transfer to skin by T cells and modulation of viral replication by epidermal cell interferon-α. J. Exp. Med. 200, 917–925 (2004). This paper reveals how VZV infects human hosts in primary infection, how the virus spreads in the body and the early role of innate immunity in its control.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Sen, N. et al. Single-cell mass cytometry analysis of human tonsil T cell remodeling by varicella zoster virus. Cell Rep. 8, 633–645 (2014). This article provides the first demonstration that VZV remodels host cells to increase its infectivity.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Levin, M. J. Varicella-zoster virus and virus DNA in the blood and oropharynx of people with latent or active varicella-zoster virus infections. J. Clin. Virol. 61, 487–495 (2014).

    Article  CAS  PubMed  Google Scholar 

  36. Arvin, A. M. & Gilden, D. H. in Fields Virology (eds Knipe, D. & Howley, P. ) 2015–2057 (Lippincott, 2013).

    Google Scholar 

  37. Gershon, A. A. et al. Latency of varicella zoster virus in dorsal root, cranial, and enteric ganglia in vaccinated children. Trans. Am. Clin. Climatol. Assoc. 123, 17–33; discussion 33–35 (2012).

    PubMed  PubMed Central  Google Scholar 

  38. Mahalingam, R. et al. Simian varicella virus infects ganglia before rash in experimentally infected monkeys. Virology 279, 339–342 (2001).

    Article  CAS  PubMed  Google Scholar 

  39. Gan, L., Wang, M., Chen, J. J., Gershon, M. D. & Gershon, A. A. Infected peripheral blood mononuclear cells transmit latent varicella zoster virus infection to the guinea pig enteric nervous system. J. Neurovirol. 20, 442–456 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Levin, M. J., Cai, G.-Y., Manchak, M. D. & Pizer, L. I. Varicella-zoster virus DNA in cells isolated from human trigeminal ganglia. J. Virol. 77, 6979–6987 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Gary, L., Gilden, D. H. & Cohrs, R. J. Epigenetic regulation of varicella-zoster virus open reading frames 62 and 63 in latently infected human trigeminal ganglia. J. Virol. 80, 4921–4926 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Ambagala, A. P. et al. Varicella-zoster virus immediate-early 63 protein interacts with human antisilencing function 1 protein and alters its ability to bind histones h3.1 and h3.3. J. Virol. 83, 200–209 (2009).

    Article  CAS  PubMed  Google Scholar 

  43. Plotkin, S. A., Stein, S., Snyder, M. & Immesoete, P. Attempts to recover varicella virus from ganglia. Ann. Neurol. 2, 249 (1977).

    Article  CAS  PubMed  Google Scholar 

  44. Ouwendijk, W. J. D. et al. Restricted varicella-zoster virus transcription in human trigeminal ganglia obtained soon after death. J. Virol. 86, 10203–10206 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Chen, J. J., Gershon, A. A., Li, Z., Cowles, R. A. & Gershon, M. D. Varicella zoster virus (VZV) infects and establishes latency in enteric neurons. J. Neurovirol. 17, 578–589 (2011). This study demonstrates the latency of VZV in the enteric nervous system.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Gershon, A. A., Chen, J. & Gershon, M. D. A model of lytic, latent, and reactivating varicella-zoster virus infections in isolated enteric neurons. J. Infect. Dis. 197 (Suppl.), S61–S65 (2008).

    Article  PubMed  Google Scholar 

  47. Chen, J. J., Gershon, A. A., Li, Z. S., Lungu, O. & Gershon, M. D. Latent and lytic infection of isolated guinea pig enteric ganglia by varicella zoster virus. J. Med. Virol. 70 (Suppl. 1), S71–S78 (2003).

    Article  PubMed  Google Scholar 

  48. Head, H., Campbell, A. & Kennedy, P. The pathology of herpes zoster and its bearing on sensory localisation. Rev. Med. Virol. 7, 131–143 (1997).

    Article  CAS  PubMed  Google Scholar 

  49. Schmidbauer, M., Budka, H., Pilz, P., Kurata, T. & Hondo, R. Presence, distribution and spread of productive varicella zoster virus infection in nervous tissues. Brain 115, 383–398 (1992).

    Article  PubMed  Google Scholar 

  50. Steain, M. et al. Analysis of T cell responses during active varicella-zoster virus reactivation in human ganglia. J. Virol. 88, 2704–2716 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Gowrishankar, K. et al. Characterization of the host immune response in human ganglia after herpes zoster. J. Virol. 84, 8861–8870 (2010). This paper describes the immunological events in latently infected dorsal root ganglia.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Grinfeld, E. & Kennedy, P. G. E. Translation of varicella-zoster virus genes during human ganglionic latency. Virus Genes 29, 317–319 (2004).

    Article  CAS  PubMed  Google Scholar 

  53. Lungu, O., Panagiotidis, C. A., Annunziato, P. W., Gershon, A. A. & Silverstein, S. J. Aberrant intracellular localization of varicella-zoster virus regulatory proteins during latency. Proc. Natl Acad. Sci. USA 95, 7080–7085 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Cohrs, R. J., Gilden, D. H., Kinchington, P. R., Grinfeld, E. & Kennedy, P. G. E. Varicella-zoster virus gene 66 transcription and translation in latently infected human ganglia. J. Virol. 77, 6660–6665 (2003). A study of the VZV gene expression in the latent infection of neurons.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Azarkh, Y., Gilden, D. & Cohrs, R. J. Molecular characterization of varicella zoster virus in latently infected human ganglia: physical state and abundance of VZV DNA, quantitation of viral transcripts and detection of VZV-specific proteins. Curr. Top. Microbiol. Immunol. 342, 229–241 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Walters, M. S., Kyratsous, C. A., Wan, S. & Silverstein, S. Nuclear import of the varicella-zoster virus latency-associated protein ORF63 in primary neurons requires expression of the lytic protein ORF61 and occurs in a proteasome-dependent manner. J. Virol. 82, 8673–8686 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Zerboni, L. et al. Expression of varicella-zoster virus immediate-early regulatory protein IE63 in neurons of latently infected human sensory ganglia. J. Virol. 84, 3421–3430 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Zerboni, L. et al. Apparent expression of varicella-zoster virus proteins in latency resulting from reactivity of murine and rabbit antibodies with human blood group a determinants in sensory neurons. J. Virol. 86, 578–583 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Stowasser, M., Cameron, J. & Oliver, W. A. Diaphragmatic paralysis following cervical herpes zoster. Med. J. Aust. 153, 555–556 (1990).

    CAS  PubMed  Google Scholar 

  60. Jellinek, E. H. & Tulloch, W. S. Herpes zoster with dysfunction of bladder and anus. Lancet 2, 1219–1222 (1976).

    Article  CAS  PubMed  Google Scholar 

  61. Umehara, T., Sengoku, R., Mitsumura, H. & Mochio, S. Neurological picture. Findings of segmental zoster paresis on MRI. J. Neurol. Neurosurg. Psychiatry 82, 694 (2011).

    Article  PubMed  Google Scholar 

  62. Choi, J.-Y., Kang, C. H., Kim, B.-J., Park, K.-W. & Yu, S.-W. Brachial plexopathy following herpes zoster infection: two cases with MRI findings. J. Neurol. Sci. 285, 224–226 (2009).

    Article  PubMed  Google Scholar 

  63. Thomas, J. E. & Howard, F. M. Segmental zoster paresis — a disease profile. Neurology 22, 459–466 (1972).

    Article  CAS  PubMed  Google Scholar 

  64. Smith, F. P. Pathological studies of spinal nerve ganglia in relation to intractable intercostal pain. Surg. Neurol. 10, 50–53 (1978).

    CAS  PubMed  Google Scholar 

  65. Watson, C. P., Watt, V. R., Chipman, M., Birkett, N. & Evans, R. J. The prognosis with postherpetic neuralgia. Pain 46, 195–199 (1991).

    Article  CAS  PubMed  Google Scholar 

  66. Lai, J., Porreca, F., Hunter, J. C. & Gold, M. S. Voltage-gated sodium channels and hyperalgesia. Annu. Rev. Pharmacol. Toxicol. 44, 371–397 (2004).

    Article  CAS  PubMed  Google Scholar 

  67. Kennedy, P. G. E. et al. Varicella-zoster viruses associated with post-herpetic neuralgia induce sodium current density increases in the ND7-23 Nav-1.8 neuroblastoma cell line. PLoS ONE 8, e51570 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Mahalingam, R., Wellish, M., Brucklier, J. & Gilden, D. H. Persistence of varicella-zoster virus DNA in elderly patients with postherpetic neuralgia. J. Neurovirol. 1, 130–133 (1995).

    Article  CAS  PubMed  Google Scholar 

  69. Gilden, D. H., Cohrs, R. J., Hayward, A. R., Wellish, M. & Mahalingam, R. Chronic varicella-zoster virus ganglionitis — a possible cause of postherpetic neuralgia. J. Neurovirol. 9, 404–407 (2003).

    Article  CAS  PubMed  Google Scholar 

  70. Beutner, K. R., Friedman, D. J., Forszpaniak, C., Andersen, P. L. & Wood, M. J. Valaciclovir compared with acyclovir for improved therapy for herpes zoster in immunocompetent adults. Antimicrob. Agents Chemother. 39, 1546–1553 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Degreef, H. Famciclovir, a new oral antiherpes drug: results of the first controlled clinical study demonstrating its efficacy and safety in the treatment of uncomplicated herpes zoster in immunocompetent patients. Int. J. Antimicrob. Agents 4, 241–246 (1994).

    Article  CAS  PubMed  Google Scholar 

  72. Acosta, E. P. & Balfour, H. H. Acyclovir for treatment of postherpetic neuralgia: efficacy and pharmacokinetics. Antimicrob. Agents Chemother. 45, 2771–2774 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Quan, D., Hammack, B. N., Kittelson, J. & Gilden, D. H. Improvement of postherpetic neuralgia after treatment with intravenous acyclovir followed by oral valacyclovir. Arch. Neurol. 63, 940–942 (2006).

    Article  PubMed  Google Scholar 

  74. Chen, N. et al. Antiviral treatment for preventing postherpetic neuralgia. Cochrane Database Syst. Rev. 2, CD006866 (2014).

    Google Scholar 

  75. Solomon, C. G., Johnson, R. W. & Rice, A. S. C. Postherpetic neuralgia. N. Engl. J. Med. 371, 1526–1533 (2014).

    Article  CAS  Google Scholar 

  76. Klein, N. C., McDermott, B. & Cunha, B. A. Varicella-zoster virus meningoencephalitis in an immunocompetent patient without a rash. Scand. J. Infect. Dis. 42, 631–633 (2010).

    Article  PubMed  Google Scholar 

  77. Gunson, R. N., Aitken, C. & Gilden, D. A woman with acute headache and sacral dermatomal numbness. J. Clin. Virol. 50, 191–193 (2011).

    Article  CAS  PubMed  Google Scholar 

  78. Ratzka, P., Schlachetzki, J. C. M., Bähr, M. & Nau, R. Varicella zoster virus cerebellitis in a 66-year-old patient without herpes zoster. Lancet 367, 182 (2006).

    Article  PubMed  Google Scholar 

  79. Ciccone, S. et al. Stroke after varicella-zoster infection: report of a case and review of the literature. Pediatr. Infect. Dis. J. 29, 864–867 (2010).

    Article  PubMed  Google Scholar 

  80. Kang, J.-H., Ho, J.-D., Chen, Y.-H. & Lin, H.-C. Increased risk of stroke after a herpes zoster attack: a population-based follow-up study. Stroke. 40, 3443–3448 (2009).

    Article  CAS  PubMed  Google Scholar 

  81. Nagel, M. A. et al. The varicella zoster virus vasculopathies: clinical, CSF, imaging, and virologic features. Neurology 70, 853–860 (2008). This paper demonstrates that VZV vasculopathies in cerebral arteries lead to strokes.

    Article  CAS  PubMed  Google Scholar 

  82. Lin, H.-C., Chien, C.-W. & Ho, J.-D. Herpes zoster ophthalmicus and the risk of stroke: a population-based follow-up study. Neurology 74, 792–797 (2010).

    Article  PubMed  Google Scholar 

  83. Hilt, D. C., Buchholz, D., Krumholz, A., Weiss, H. & Wolinsky, J. S. Herpes zoster ophthalmicus and delayed contralateral hemiparesis caused by cerebral angiitis: diagnosis and management approaches. Ann. Neurol. 14, 543–553 (1983).

    Article  CAS  PubMed  Google Scholar 

  84. Bourdette, D. N., Rosenberg, N. L. & Yatsu, F. M. Herpes zoster ophthalmicus and delayed ipsilateral cerebral infarction. Neurology 33, 1428–1432 (1983). This paper shows the link between VZV infection and stroke.

    Article  CAS  PubMed  Google Scholar 

  85. Nagel, M. A. et al. Varicella zoster virus vasculopathy: analysis of virus-infected arteries. Neurology 77, 364–370 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Gilden, D., Cohrs, R. J., Mahalingam, R. & Nagel, M. A. Varicella zoster virus vasculopathies: diverse clinical manifestations, laboratory features, pathogenesis, and treatment. Lancet Neurol. 8, 731–740 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  87. Grose, C. Stroke after varicella and zoster ophthalmicus: another indication for treatment and immunization. Pediatr. Infect. Dis. J. 29, 868–869 (2010).

    Article  PubMed  Google Scholar 

  88. Gilden, D. et al. Prevalence and distribution of VZV in temporal arteries of patients with giant cell arteritis. Neurology 84, 1948–1955 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  89. Franco-Paredes, C. et al. Aseptic meningitis and optic neuritis preceding varicella-zoster progressive outer retinal necrosis in a patient with AIDS. AIDS 16, 1045–1049 (2002).

    Article  PubMed  Google Scholar 

  90. Furuta, Y. et al. Varicella-zoster virus reactivation is an important cause of acute peripheral facial paralysis in children. Pediatr. Infect. Dis. J. 24, 97–101 (2005).

    Article  PubMed  Google Scholar 

  91. Pahud, B. A., Glaser, C. A., Dekker, C. L., Arvin, A. M. & Schmid, D. S. Varicella zoster disease of the central nervous system: epidemiological, clinical, and laboratory features 10 years after the introduction of the varicella vaccine. J. Infect. Dis. 203, 316–323 (2011). This paper describes meningitis and encephalitis caused by VZV, often without rash.

    Article  PubMed  PubMed Central  Google Scholar 

  92. Gilden, D. H., Dueland, A. N., Devlin, M. E., Mahalingam, R. & Cohrs, R. Varicella-zoster virus reactivation without rash. J. Infect. Dis. 166 (Suppl.), S30–S34 (1992).

    Article  PubMed  Google Scholar 

  93. Gilden, D. H. et al. Varicella zoster virus, a cause of waxing and waning vasculitis: the New England Journal of Medicine case 5–1995 revisited. Neurology 47, 1441–1446 (1996).

    Article  CAS  PubMed  Google Scholar 

  94. Kleinschmidt-DeMasters, B. K. & Gilden, D. H. Varicella-zoster virus infections of the nervous system: clinical and pathologic correlates. Arch. Pathol. Lab. Med. 125, 770–780 (2001).

    CAS  PubMed  Google Scholar 

  95. McKelvie, P. A. et al. Meningoencephalomyelitis with vasculitis due to varicella zoster virus: a case report and review of the literature. Pathology 34, 88–93 (2002).

    Article  PubMed  Google Scholar 

  96. Langan, S. M., Minassian, C., Smeeth, L. & Thomas, S. L. Risk of stroke following herpes zoster: a self-controlled case-series study. Clin. Infect. Dis. 58, 1497–1503 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  97. Breuer, J., Pacou, M., Gauthier, A. & Brown, M. M. Herpes zoster as a risk factor for stroke and TIA: a retrospective cohort study in the UK. Neurology 82, 206–212 (2014). This paper provides further recognition of the relationship between VZV and stroke.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Gilden, D. H. et al. Varicella-zoster virus myelitis: an expanding spectrum. Neurology 44, 1818–1823 (1994).

    Article  CAS  PubMed  Google Scholar 

  99. Chen, J. J. et al. Latent, lytic and reactivating varicella zoster virus in the ENS of humans and guinea pigs: could intestinal shingles be a hidden cause of gastrointestinal disease? Neuroastroenterol. Motil. 15, abstr. 196–237 (2003).

    Google Scholar 

  100. Edelman, D. A. et al. Ogilvie syndrome and herpes zoster: case report and review of the literature. J. Emerg. Med. 39, 696–700 (2010).

    Article  PubMed  Google Scholar 

  101. Scholl, S., Hocke, M., Hoffken, K. & Sayer, H. G. Acute abdomen by varicella zoster virus induced gastritis after autologous peripheral blood stem cell transplantation in a patient with non-Hodgkin's lymphoma. Acta Haematol. 116, 58–61 (2006).

    Article  CAS  PubMed  Google Scholar 

  102. Gershon, A. A., Chen, J. & Gershon, M. D. Use of saliva to identify varicella-zoster virus (VZV) infection of the gut. Clin. Infect. Dis. http://dx.doi.org/10.1093/cid/civ320 (2015). This paper identifies VZV infection of the gastrointestinal tract in the absence of rash.

  103. Leung, J. et al. Evaluation of laboratory methods for diagnosis of varicella. Clin. Infect. Dis. 51, 23–32 (2010).

    Article  CAS  PubMed  Google Scholar 

  104. Harbecke, R. et al. A real-time PCR assay to identify and discriminate among wild-type and vaccine strains of varicella-zoster virus and herpes simplex virus in clinical specimens, and comparison with the clinical diagnoses. J. Med. Virol. 81, 1310–1322 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Mehta, S. K. et al. Rapid and sensitive detection of varicella zoster virus in saliva of patients with herpes zoster. J. Virol. Methods 193, 128–130 (2013). This paper describes the diagnosis of VZV infection by analysing VZV DNA in saliva.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Mehta, S. K. et al. Varicella-zoster virus in the saliva of patients with herpes zoster. J. Infect. Dis. 197, 654–657 (2008).

    Article  PubMed  Google Scholar 

  107. Furuta, Y., Ohtani, F., Sawa, H., Fukuda, S. & Inuyama, Y. Quantitation of varicella-zoster virus DNA in patients with Ramsay Hunt syndrome and zoster sine herpete. J. Clin. Microbiol. 39, 2856–2859 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Puchhammer-Stöckl, E., Popow-Kraupp, T., Heinz, F. X., Mandl, C. W. & Kunz, C. Detection of varicella-zoster virus DNA by polymerase chain reaction in the cerebrospinal fluid of patients suffering from neurological complications associated with chicken pox or herpes zoster. J. Clin. Microbiol. 29, 1513–1516 (1991).

    PubMed  PubMed Central  Google Scholar 

  109. Jääskeläinen, A. J., Piiparinen, H., Lappalainen, M. & Vaheri, A. Improved multiplex-PCR and microarray for herpesvirus detection from CSF. J. Clin. Virol. 42, 172–175 (2008).

    Article  CAS  PubMed  Google Scholar 

  110. Vázquez, M. et al. The effectiveness of the varicella vaccine in clinical practice. N. Engl. J. Med. 344, 955–960 (2001).

    Article  PubMed  Google Scholar 

  111. Sauerbrei, A., Taut, J., Zell, R. & Wutzler, P. Resistance testing of clinical varicella-zoster virus strains. Antiviral Res. 90, 242–247 (2011).

    Article  CAS  PubMed  Google Scholar 

  112. Quinlivan, M. L., Jensen, N. J., Radford, K. W. & Schmid, D. S. Novel genetic variation identified at fixed loci in ORF62 of the Oka varicella vaccine and in a case of vaccine-associated herpes zoster. J. Clin. Microbiol. 50, 1533–1538 (2012). This article describes the molecular differentiation between wild-type and vaccine-types of VZV using viral DNA from patients.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. LaRussa, P. et al. Restriction fragment length polymorphism of polymerase chain reaction products from vaccine and wild-type varicella-zoster virus isolates. J. Virol. 66, 1016–1020 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Ibraheem, M. et al. Fatal wild-type varicella-zoster virus encephalitis without a rash in a vaccinated child. Pediatr. Infect. Dis. J. 32, 183–185 (2013).

    Article  PubMed  Google Scholar 

  115. National Health Service. Varicella Zoster Virus Reference Lab. Great Ormond Street Hospital for Children NHS Trust[online] (2011).

  116. Mehta, S. K. et al. Stress-induced subclinical reactivation of varicella zoster virus in astronauts. J. Med. Virol. 72, 174–179 (2004). This study describes asymptomatic reactivation of VZV as demonstrated by the transient presence of VZV DNA in saliva.

    Article  PubMed  Google Scholar 

  117. Papaevangelou, V. et al. Subclinical VZV reactivation in immunocompetent children hospitalized in the ICU associated with prolonged fever duration. Clin. Microbiol. Infect. 19, E245–E251 (2013).

    Article  CAS  PubMed  Google Scholar 

  118. Birlea, M. et al. Search for varicella zoster virus DNA in saliva of healthy individuals aged 20–59 years. J. Med. Virol. 86, 360–362 (2014).

    Article  PubMed  Google Scholar 

  119. Takahashi, M., Otsuka, T., Okuno, Y., Asano, Y. & Yazaki, T. Live vaccine used to prevent the spread of varicella in children in hospital. Lancet 2, 1288–1290 (1974). This study describes the successful attenuation of VZV and the use of this live attenuated virus to prevent varicella, thereby demonstrating the first successful vaccine against varicella.

    Article  CAS  PubMed  Google Scholar 

  120. Gomi, Y. et al. Comparison of the complete DNA sequences of the Oka varicella vaccine and its parental virus. J. Virol. 76, 11447–11459 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Oxman, M. N. Zoster vaccine: current status and future prospects. Clin. Infect. Dis. 51, 197–213 (2010).

    Article  PubMed  Google Scholar 

  122. Yamanishi, K. Molecular analysis of the Oka vaccine strain of varicella-zoster virus. J. Infect. Dis. 197 (Suppl.), S45–S48 (2008). This study identifies the molecular features of the attenuated vaccine strain of VZV compared with the wild-type strain.

    Article  CAS  PubMed  Google Scholar 

  123. Peters, G. A. et al. The attenuated genotype of varicella-zoster virus includes an ORF0 transitional stop codon mutation. J. Virol. 86, 10695–10703 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Asano, Y., Nakayama, H., Yazaki, T., Kato, R. & Hirose, S. Protection against varicella in family contacts by immediate inoculation with live varicella vaccine. Pediatrics 59, 3–7 (1977). This is the first demonstration of the clinical effectiveness of the Oka strain in preventing varicella, together with immunological data.

    CAS  PubMed  Google Scholar 

  125. Asano, Y. & Takahashi, M. Clinical and serologic testing of a live varicella vaccine and two-year follow-up for immunity of the vaccinated children. Pediatrics 60, 810–814 (1977).

    CAS  PubMed  Google Scholar 

  126. Gershon, A. A. et al. Live attenuated varicella vaccine. Efficacy for children with leukemia in remission. JAMA 252, 355–362 (1984). This paper provides the first proof that the varicella vaccine is safe and effective in preventing varicella in children with underlying leukaemia.

    Article  CAS  PubMed  Google Scholar 

  127. White, C. J. Clinical trials of varicella vaccine in healthy children. Infect. Dis. Clin. North Am. 10, 595–608 (1996).

    Article  CAS  PubMed  Google Scholar 

  128. White, C. J. et al. Varicella vaccine (VARIVAX) in healthy children and adolescents: results from clinical trials, 1987 to 1989. Pediatrics 87, 604–610 (1991).

    CAS  PubMed  Google Scholar 

  129. Weibel, R. E. et al. Live attenuated varicella virus vaccine. Efficacy trial in healthy children. N. Engl. J. Med. 310, 1409–1415 (1984). This study demonstrates that varicella vaccination protects healthy children from chickenpox.

    Article  CAS  PubMed  Google Scholar 

  130. Shapiro, E. D. et al. Effectiveness of 2 doses of varicella vaccine in children. J. Infect. Dis. 203, 312–315 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Centers for Disease Control and Prevention (CDC). FDA approval of an extended period for administering VariZIG for postexposure prophylaxis of varicella. MMWR Morb. Mortal. Wkly Rep. 61, 212 (2012).

    Google Scholar 

  132. Lin, T. Y., Huang, Y. C., Ning, H. C. & Hsueh, C. Oral acyclovir prophylaxis of varicella after intimate contact. Pediatr. Infect. Dis. J. 16, 1162–1165 (1997).

    Article  CAS  PubMed  Google Scholar 

  133. Huang, Y. C., Lin, T. Y. & Chiu, C. H. Acyclovir prophylaxis of varicella after household exposure. Pediatr. Infect. Dis. J. 14, 152–154 (1995).

    Article  CAS  PubMed  Google Scholar 

  134. Klein, A., Miller, K. B., Sprague, K., DesJardin, J. A. & Snydman, D. R. A randomized, double-blind, placebo-controlled trial of valacyclovir prophylaxis to prevent zoster recurrence from months 4 to 24 after BMT. Bone Marrow Transplant. 46, 294–299 (2011).

    Article  CAS  PubMed  Google Scholar 

  135. Ljungman, P. et al. Long-term acyclovir prophylaxis in bone marrow transplant recipients and lymphocyte proliferation responses to herpes virus antigens in vitro. Bone Marrow Transplant. 1, 185–192 (1986).

    CAS  PubMed  Google Scholar 

  136. Linnemann, C. C., Biron, K. K., Hoppenjans, W. G. & Solinger, A. M. Emergence of acyclovir-resistant varicella zoster virus in an AIDS patient on prolonged acyclovir therapy. AIDS 4, 577–579 (1990).

    Article  PubMed  Google Scholar 

  137. Levin, M. J. et al. Development of resistance to acyclovir during chronic infection with the Oka vaccine strain of varicella-zoster virus, in an immunosuppressed child. J. Infect. Dis. 188, 954–959 (2003). This paper demonstrates that VZV can reactivate in immunocompromised children and that the vaccine virus can become resistant to acyclovir.

    Article  PubMed  Google Scholar 

  138. Bhalla, P. et al. Disseminated, persistent, and fatal infection due to the vaccine strain of varicella-zoster virus in an adult following stem cell transplantation. Clin. Infect. Dis. 60, 1068–1074 (2015).

    Article  CAS  PubMed  Google Scholar 

  139. Baxter, R. et al. Long-term effectiveness of varicella vaccine: a 14-year, prospective cohort study. Pediatrics 131, e1389–e1396 (2013).

    Article  PubMed  Google Scholar 

  140. Vázquez, M. et al. Effectiveness over time of varicella vaccine. JAMA 291, 851–855 (2004). This study shows that immunity to varicella after vaccination does not wane substantially with time.

    Article  PubMed  Google Scholar 

  141. Seward, J. F. et al. Varicella disease after introduction of varicella vaccine in the United States, 1995–2000. JAMA 287, 606–611 (2002). This study demonstrates personal and herd immunity as a result of vaccination in healthy children.

    Article  PubMed  Google Scholar 

  142. Gershon, A. A. et al. The protective effect of immunologic boosting against zoster: an analysis in leukemic children who were vaccinated against chickenpox. J. Infect. Dis. 173, 450–453 (1996).

    Article  CAS  PubMed  Google Scholar 

  143. Brisson, M., Edmunds, W. J. & Gay, N. J. Varicella vaccination: impact of vaccine efficacy on the epidemiology of VZV. J. Med. Virol. 70 (Suppl. 1), S31–S37 (2003).

    Article  PubMed  Google Scholar 

  144. Brisson, M., Gay, N. J., Edmunds, W. J. & Andrews, N. J. Exposure to varicella boosts immunity to herpes-zoster: implications for mass vaccination against chickenpox. Vaccine 20, 2500–2507 (2002).

    Article  CAS  PubMed  Google Scholar 

  145. Reynolds, M. A., Chaves, S. S., Harpaz, R., Lopez, A. S. & Seward, J. F. The impact of the varicella vaccination program on herpes zoster epidemiology in the United States: a review. J. Infect. Dis. 197 (Suppl.), S224–S227 (2008).

    Article  PubMed  Google Scholar 

  146. Gaillat, J. et al. Does monastic life predispose to the risk of Saint Anthony's fire (herpes zoster)? Clin. Infect. Dis. 53, 405–410 (2011). This paper shows that immunity to VZV does not require continued exogenous exposure to VZV and that asymptomatic episodes of reactivation of VZV are likely to have a role in maintaining long-term immunity to the virus.

    Article  PubMed  Google Scholar 

  147. Seward, J. F., Zhang, J. X., Maupin, T. J., Mascola, L. & Jumaan, A. O. Contagiousness of varicella in vaccinated cases: a household contact study. JAMA 292, 704–708 (2004).

    Article  CAS  PubMed  Google Scholar 

  148. Weinmann, S. et al. Incidence and clinical characteristics of herpes zoster among children in the varicella vaccine era, 2005–2009. J. Infect. Dis. 208, 1859–1868 (2013).

    Article  PubMed  Google Scholar 

  149. Galea, S. A. et al. The safety profile of varicella vaccine: a 10-year review. J. Infect. Dis. 197 (Suppl.), S165–S169 (2008).

    Article  PubMed  Google Scholar 

  150. Oxman, M. N. Immunization to reduce the frequency and severity of herpes zoster and its complications. Neurology 45, S41–S46 (1995).

    Article  CAS  PubMed  Google Scholar 

  151. Levin, M. J. in Vaccines. (eds Plotkin, S., Orenstein, W. & Offit, P. ) 969–980 (Elsevier, 2013).

    Book  Google Scholar 

  152. Oxman, M. N. & Levin, M. J. Vaccination against herpes zoster and postherpetic neuralgia. J. Infect. Dis. 197 (Suppl.), S228–S236 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  153. Schmader, K. E. et al. Effect of a zoster vaccine on herpes zoster-related interference with functional status and health-related quality-of-life measures in older adults. J. Am. Geriatr. Soc. 58, 1634–1641 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  154. Simberkoff, M. S. et al. Safety of herpes zoster vaccine in the shingles prevention study: a randomized trial. Ann. Intern. Med. 152, 545–554 (2010).

    Article  PubMed  Google Scholar 

  155. Harpaz, R., Ortega-Sanchez, I. R. & Seward, J. F. Prevention of herpes zoster: recommendations of the Advisory Committee on Immunization Practices (ACIP). MMWR. Recomm. Rep. 57, 1–30; quiz CE2–CE4 (2008).

    PubMed  Google Scholar 

  156. Tseng, H. F. et al. Herpes zoster vaccine in older adults and the risk of subsequent herpes zoster disease. JAMA 305, 160–166 (2011).

    Article  CAS  PubMed  Google Scholar 

  157. Langan, S. M., Smeeth, L., Margolis, D. J. & Thomas, S. L. Herpes zoster vaccine effectiveness against incident herpes zoster and post-herpetic neuralgia in an older US population: a cohort study. PLoS Med. 10, e1001420 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  158. Schmader, K. E. et al. Efficacy, safety, and tolerability of herpes zoster vaccine in persons aged 50–59 years. Clin. Infect. Dis. 54, 922–928 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  159. Schmader, K. E. et al. Persistence of the efficacy of zoster vaccine in the shingles prevention study and the short-term persistence substudy. Clin. Infect. Dis. 55, 1320–1328 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Morrison, V. A. et al. Long-term persistence of zoster vaccine efficacy. Clin. Infect. Dis. 60, 900–909 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  161. Berkowitz, E. M. et al. Safety and immunogenicity of an adjuvanted herpes zoster subunit candidate vaccine in HIV-infected adults: a phase 1/2a randomized, placebo-controlled study. J. Infect. Dis. 211, 1279–1287 (2015).

    Article  CAS  PubMed  Google Scholar 

  162. Chlibek, R. et al. Safety and immunogenicity of an AS01-adjuvanted varicella-zoster virus subunit candidate vaccine against herpes zoster in adults ≥50 years of age. J. Infect. Dis. 208, 1953–1961 (2013).

    Article  CAS  PubMed  Google Scholar 

  163. Lal, H. et al. Efficacy of an adjuvanted herpes zoster subunit vaccine in older adults. N. Engl. J. Med. 372, 2087–2096 (2015). This is the first demonstration of an adjuvanted subunit vaccine that is not infectious can prevent zoster in the elderly.

    Article  PubMed  Google Scholar 

  164. Cohen, J. I. A. A new vaccine to prevent herpes zoster. N. Engl. J. Med. 372, 2149–2150 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  165. Klassen, T. P., Hartling, L., Wiebe, N. & Belseck, E. M. Acyclovir for treating varicella in otherwise healthy children and adolescents. Cochrane Database Syst. Rev. http://dx.doi.org/10.1002/14651858.CD002980.pub3 (2005).

  166. Belay, E. D. et al. Reye's syndrome in the United States from 1981 through 1997. N. Engl. J. Med. 340, 1377–1382 (1999).

    Article  CAS  PubMed  Google Scholar 

  167. Souyri, C., Olivier, P., Grolleau, S. & Lapeyre-Mestre, M. Severe necrotizing soft-tissue infections and nonsteroidal anti-inflammatory drugs. Clin. Exp. Dermatol. 33, 249–255 (2008).

    Article  CAS  PubMed  Google Scholar 

  168. American Academy of Pediatrics Committee on Infectious Diseases. The use of oral acyclovir in otherwise healthy children with varicella. Pediatrics 91, 674–676 (1993).

    Google Scholar 

  169. Feldman, S. & Lott, L. Varicella in children with cancer: impact of antiviral therapy and prophylaxis. Pediatrics 80, 465–472 (1987).

    CAS  PubMed  Google Scholar 

  170. Etzioni, A. et al. Fatal varicella associated with selective natural killer cell deficiency. J. Pediatr. 146, 423–425 (2005). This study shows the importance of innate immunity in host defences against VZV.

    Article  PubMed  Google Scholar 

  171. Centers for Disease Control and Prevention (CDC). Updated recommendations for use of VariZIG — United States, 2013. MMWR. Morb. Mortal. Wkly Rep. 62, 574–576 (2013).

    Google Scholar 

  172. Prober, C. G., Kirk, L. E. & Keeney, R. E. Acyclovir therapy of chickenpox in immunosuppressed children — a collaborative study. J. Pediatr. 101, 622–625 (1982). This is the first demonstration of successful antiviral therapy to protect immunocompromised children from varicella.

    Article  CAS  PubMed  Google Scholar 

  173. Wallace, M. R., Bowler, W. A., Murray, N. B., Brodine, S. K. & Oldfield, E. C. Treatment of adult varicella with oral acyclovir. A randomized, placebo-controlled trial. Ann. Intern. Med. 117, 358–363 (1992).

    Article  CAS  PubMed  Google Scholar 

  174. Balfour, H. H. et al. Controlled trial of acyclovir for chickenpox evaluating time of initiation and duration of therapy and viral resistance. Pediatr. Infect. Dis. J. 20, 919–926 (2001).

    Article  PubMed  Google Scholar 

  175. Sauerbrei, A. & Wutzler, P. Herpes simplex and varicella-zoster virus infections during pregnancy: current concepts of prevention, diagnosis and therapy. Part 2: Varicella-zoster virus infections. Med. Microbiol. Immunol. 196, 95–102 (2007).

    Article  CAS  PubMed  Google Scholar 

  176. Davies, H. D. et al. Invasive group A streptococcal infections in Ontario, Canada. Ontario Group A Streptococcal Study Group. N. Engl. J. Med. 335, 547–554 (1996).

    Article  CAS  PubMed  Google Scholar 

  177. Phillips, W. G., Marsden, J. R. & Hill, F. G. Purpura fulminans due to protein S deficiency following chickenpox. Br. J. Dermatol. 127, 30–32 (1992).

    Article  CAS  PubMed  Google Scholar 

  178. Science, M. et al. Central nervous system complications of varicella-zoster virus. J. Pediatr. 165, 779–785 (2014).

    Article  PubMed  Google Scholar 

  179. Cohen, J. I. Clinical practice: herpes zoster. N. Engl. J. Med. 369, 255–263 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Dworkin, R. H. et al. Recommendations for the management of herpes zoster. Clin. Infect. Dis. 44 (Suppl. 1), S1–S26 (2007).

    Article  CAS  PubMed  Google Scholar 

  181. McDonald, E. M., de Kock, J. & Ram, F. S. F. Antivirals for management of herpes zoster including ophthalmicus: a systematic review of high-quality randomized controlled trials. Antivir. Ther. 17, 255–264 (2012).

    Article  CAS  PubMed  Google Scholar 

  182. Tyring, S. K., Beutner, K. R., Tucker, B. A., Anderson, W. C. & Crooks, R. J. Antiviral therapy for herpes zoster: randomized, controlled clinical trial of valacyclovir and famciclovir therapy in immunocompetent patients 50 years and older. Arch. Fam. Med. 9, 863–869 (2000).

    Article  CAS  PubMed  Google Scholar 

  183. Lin, W. R. et al. Comparative study of the efficacy and safety of valaciclovir versus acyclovir in the treatment of herpes zoster. J. Microbiol. Immunol. Infect. 34, 138–142 (2001).

    CAS  PubMed  Google Scholar 

  184. Whitley, R. J. et al. Acyclovir with and without prednisone for the treatment of herpes zoster. A randomized, placebo-controlled trial. The National Institute of Allergy and Infectious Diseases Collaborative Antiviral Study Group. Ann. Intern. Med. 125, 376–383 (1996).

    Article  CAS  PubMed  Google Scholar 

  185. Han, Y. et al. Corticosteroids for preventing postherpetic neuralgia. Cochrane Database Syst. Rev. 3, CD005582 (2013).

    Google Scholar 

  186. Dworkin, R. H. et al. A randomized, placebo-controlled trial of oxycodone and of gabapentin for acute pain in herpes zoster. Pain 142, 209–217 (2009).

    Article  CAS  PubMed  Google Scholar 

  187. Severson, E. A., Baratz, K. H., Hodge, D. O. & Burke, J. P. Herpes zoster ophthalmicus in Olmsted County, Minnesota: have systemic antivirals made a difference? Arch. Ophthalmol. 121, 386–390 (2003).

    Article  PubMed  Google Scholar 

  188. Gilron, I. et al. Nortriptyline and gabapentin, alone and in combination for neuropathic pain: a double-blind, randomised controlled crossover trial. Lancet 374, 1252–1261 (2009).

    Article  CAS  PubMed  Google Scholar 

  189. McNicol, E. D., Midbari, A. & Eisenberg, E. Opioids for neuropathic pain. Cochrane Database Syst. Rev. 8, CD006146 (2013).

    Google Scholar 

  190. Brunell, P. A., Taylor-Wiedeman, J., Geiser, C. F., Frierson, L. & Lydick, E. Risk of herpes zoster in children with leukemia: varicella vaccine compared with history of chickenpox. Pediatrics 77, 53–56 (1986).

    CAS  PubMed  Google Scholar 

  191. Civen, R. et al. The incidence and clinical characteristics of herpes zoster among children and adolescents after implementation of varicella vaccination. Pediatr. Infect. Dis. J. 28, 954–959 (2009).

    Article  PubMed  Google Scholar 

  192. Coplan, P. M. et al. Development of a measure of the burden of pain due to herpes zoster and postherpetic neuralgia for prevention trials: adaptation of the brief pain inventory. J. Pain 5, 344–356 (2004).

    Article  PubMed  Google Scholar 

  193. Orvedahl, A. & Levine, B. Viral evasion of autophagy. Autophagy 4, 280–285 (2008).

    Article  CAS  PubMed  Google Scholar 

  194. Carpenter, J. E., Jackson, W., Benetti, L. & Grose, C. Autophagosome formation during varicella-zoster virus infection following endoplasmic reticulum stress and the unfolded protein response. J. Virol. 85, 9414–9424 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Buckingham, E. M. et al. Autophagic flux without a block differentiates varicella-zoster virus infection from herpes simplex virus infection. Proc. Natl Acad. Sci. USA 112, 256–261 (2015).

    Article  CAS  PubMed  Google Scholar 

  196. Davison, A. J. & Scott, J. E. The complete DNA sequence of varicella-zoster virus. J. Gen. Virol. 67, 1759–1816 (1986). This paper provides the first complete DNA sequence of VZV.

    Article  CAS  PubMed  Google Scholar 

  197. McGeoch, D. J., Rixon, F. J. & Davison, A. J. Topics in herpesvirus genomics and evolution. Virus Res. 117, 90–104 (2006).

    Article  CAS  PubMed  Google Scholar 

  198. Grose, C. Pangaea and the Out-of-Africa model of varicella-zoster virus evolution and phylogeography. J. Virol. 86, 9558–9565 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Kojima, E. et al. The function of GADD34 is a recovery from a shutoff of protein synthesis induced by ER stress: elucidation by GADD34-deficient mice. FASEB J. 17, 1573–1575 (2003).

    Article  CAS  PubMed  Google Scholar 

  200. Ravi, V., Kennedy, P. G. & MacLean, A. R. Functional analysis of the herpes simplex virus type 2 strain HG52 RL1 gene: the intron plays no role in virulence. J. Gen. Virol. 79, 1613–1617 (1998).

    Article  CAS  PubMed  Google Scholar 

  201. Perelygina, L. et al. Complete sequence and comparative analysis of the genome of herpes B virus (Cercopithecine herpesvirus 1) from a rhesus monkey. J. Virol. 77, 6167–6177 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Grose, C. & Giller, R. H. Varicella-zoster virus infection and immunization in the healthy and the immunocompromised host. Crit. Rev. Oncol. Hematol. 8, 27–64 (1988).

    Article  CAS  PubMed  Google Scholar 

  203. Holgate, S. T. Innate and adaptive immune responses in asthma. Nat. Med. 18, 673–683 (2012).

    Article  CAS  PubMed  Google Scholar 

  204. Kim, B.-S. et al. Increased risk of herpes zoster in children with asthma: a population-based case–control study. J. Pediatr. 163, 816–821 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  205. Esteban-Vasallo, M. D., Domínguez-Berjón, M. F., Gil-Prieto, R., Astray-Mochales, J. & Gil de Miguel, A. Sociodemographic characteristics and chronic medical conditions as risk factors for herpes zoster: a population-based study from primary care in Madrid (Spain). Hum. Vaccin. Immunother. 10, 1650–1660 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  206. Straus, S. E. Clinical and biological differences between recurrent herpes simplex virus and varicella-zoster virus infections. JAMA 262, 3455–3458 (1989).

    Article  CAS  PubMed  Google Scholar 

  207. Weller, T. H. & Stoddard, M. B. Intranuclear inclusion bodies in cultures of human tissue inoculated with varicella vesicle fluid. J. Immunol. 68, 311–319 (1952). In this study, VZV was isolated in cell culture for the first time, which was critical for the eventual development of a vaccine.

    CAS  PubMed  Google Scholar 

  208. Weller, T. H. Serial propagation in vitro of agents producing inclusion bodies derived from varicella and herpes zoster. Proc. Soc. Exp. Biol. Med. 83, 340–346 (1953).

    Article  CAS  PubMed  Google Scholar 

  209. Centers for Disease Control and Prevention (CDC). Summary of notifiable diseases: United States, 2009. MMWR Morb. Mortal. Wkly Rep. 58, 1–100 (2011).

    Google Scholar 

  210. Zerboni, L., Sen, N., Oliver, S. L. & Arvin, A. M. Molecular mechanisms of varicella zoster virus pathogenesis. Nat. Rev. Microbiol. 12, 197–210 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. De Clercq, E. Strategies in the design of antiviral drugs. Nat. Rev. Drug Discov. 1, 13–25 (2002).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

J.B. receives funding from the National Institute for Health Research (NIHR) University College London (UCL)/University College London Hospitals NHS Foundation Trust (UCLH) Biomedical Research Centre, UK. J.I.C. is supported by the intramural research program of the National Institute of Allergy and Infectious Diseases, USA. R.J.C. is supported by grants NS082228 and AG032958 from the US National Institutes of Health (NIH). D.G. is supported by grants AG006127 and AG032958 from the NIH. C.G. is supported by grant AI89716 from the NIH. S.H. receives funding from the Sir Jules Thorn Charitable Trust. M.D.G. and A.A.G. receive funding from NIH R01 Grant DK 09394. M.N.O.'s work is partially supported by the James R. and Jesse V. Scott Fund for Shingles Research in the Veterans Medical Research Foundation. P.G.E.K. receives grant funding for research from the Wellcome Trust.

Author information

Authors and Affiliations

Authors

Contributions

Introduction (A.A.G.); Epidemiology (J.F.S. and J.B.); Mechanisms/pathophysiology (D.G., R.J.C., P.G.E.K. and M.G.); Diagnosis, screening and prevention (A.A.G., M.N.O. and K.Y.), Management (J.I.C. and S.H.); Quality of life (A.A.G.); Outlook (C.G); and overview of Primer (A.A.G.).

Corresponding author

Correspondence to Anne A. Gershon.

Ethics declarations

Competing interests

J.B., J.I.C., R.J.C., M.D.G., D.G., C.G., S.H., M.N.O. and J.F.S. declare no competing interests. A.A.G. declares service contracts from Merck to investigate the safety of VZV vaccines (identifying VZV in samples from patients with possible adverse reactions), chairs an independent data monitoring committee for GlaxoSmithKlines Phase III subunit glycoprotein E zoster vaccine trial, consults with Pfizer when invited, and has participated in an educational programme (supported by an unrestricted educational grant) on zoster for GlaxoSmithKline. P.G.E.K. has served on a scientific advisory board on zoster vaccination for Sanofi Pasteur MSD. Y.K. is Director General of the BIKEN foundation (The Research Foundation for Microbial Diseases of Osaka University), which produces varicella vaccines.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gershon, A., Breuer, J., Cohen, J. et al. Varicella zoster virus infection. Nat Rev Dis Primers 1, 15016 (2015). https://doi.org/10.1038/nrdp.2015.16

Download citation

  • Published:

  • DOI: https://doi.org/10.1038/nrdp.2015.16

This article is cited by

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology