Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Primer
  • Published:

Diabetic kidney disease

A Correction to this article was published on 29 October 2015

Abstract

The kidney is arguably the most important target of microvascular damage in diabetes. A substantial proportion of individuals with diabetes will develop kidney disease owing to their disease and/or other co-morbidity, including hypertension and ageing-related nephron loss. The presence and severity of chronic kidney disease (CKD) identify individuals who are at increased risk of adverse health outcomes and premature mortality. Consequently, preventing and managing CKD in patients with diabetes is now a key aim of their overall management. Intensive management of patients with diabetes includes controlling blood glucose levels and blood pressure as well as blockade of the renin–angiotensin–aldosterone system; these approaches will reduce the incidence of diabetic kidney disease and slow its progression. Indeed, the major decline in the incidence of diabetic kidney disease (DKD) over the past 30 years and improved patient prognosis are largely attributable to improved diabetes care. However, there remains an unmet need for innovative treatment strategies to prevent, arrest, treat and reverse DKD. In this Primer, we summarize what is now known about the molecular pathogenesis of CKD in patients with diabetes and the key pathways and targets implicated in its progression. In addition, we discuss the current evidence for the prevention and management of DKD as well as the many controversies. Finally, we explore the opportunities to develop new interventions through urgently needed investment in dedicated and focused research. For an illustrated summary of this Primer, visit: http://go.nature.com/NKHDzg

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The prevalence of CKD in different populations with type 2 diabetes.
Figure 2: The central role of ROS in diabetic complications.
Figure 3: Glomerulopathy in diabetes.
Figure 4: Cellular contributors to myofibroblast recruitment and subsequent tubulointerstitial fibrosis in DKD.
Figure 5: The relationship between glycaemic control and the incidence of CKD.
Figure 6: The incidence of ESRD in patients with type 2 diabetes from the ADVANCE-ON trial.
Figure 7: The strong association between diabetic kidney disease and increased incidence and prevalence of other diabetic complications.

Similar content being viewed by others

References

  1. Groop, P. H. et al. The presence and severity of chronic kidney disease predicts all-cause mortality in type 1 diabetes. Diabetes 58, 1651–1658 (2009). A key paper showing the clustering of adverse outcomes in type 1 diabetes in individuals with CKD from the FinnDiane cohort.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Orchard, T. J., Secrest, A. M., Miller, R. G. & Costacou, T. In the absence of renal disease, 20 year mortality risk in type 1 diabetes is comparable to that of the general population: a report from the Pittsburgh Epidemiology of Diabetes Complications Study. Diabetologia 53, 2312–2319 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Bruno, G. et al. Estimated glomerular filtration rate, albuminuria and mortality in type 2 diabetes: the Casale Monferrato study. Diabetologia 50, 941–948 (2007).

    Article  CAS  PubMed  Google Scholar 

  4. Afkarian, M. et al. Kidney disease and increased mortality risk in type 2 diabetes. J. Am. Soc. Nephrol. 24, 302–308 (2013). This important study shows the clustering of adverse outcomes in type 2 diabetes in individuals with CKD from the NHANES cohort.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Thomas, M. C., Weekes, A. J., Broadley, O. J., Cooper, M. E. & Mathew, T. H. The burden of chronic kidney disease in Australian patients with type 2 diabetes (the NEFRON study). Med. J. Australia 185, 140–144 (2006).

    PubMed  Google Scholar 

  6. Dwyer, J. P. et al. Renal dysfunction in the presence of normoalbuminuria in type 2 diabetes: results from the DEMAND study. Cardiorenal Med. 2, 1–10 (2012).

    Article  CAS  PubMed  Google Scholar 

  7. Mogensen, C. E., Christensen, C. K. & Vittinghus, E. The stages in diabetic renal disease. With emphasis on the stage of incipient diabetic nephropathy. Diabetes 32 (Suppl. 2), 64–78 (1983).

    Article  PubMed  Google Scholar 

  8. de Zeeuw, D., Parving, H. H. & Henning, R. H. Microalbuminuria as an early marker for cardiovascular disease. J. Am. Soc. Nephrol. 17, 2100–2105 (2006).

    Article  CAS  PubMed  Google Scholar 

  9. Thomas, M. C. et al. Nonalbuminuric renal impairment in type 2 diabetic patients and in the general population (national evaluation of the frequency of renal impairment co-existing with NIDDM [NEFRON] 11). Diabetes Care 32, 1497–1502 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Perkins, B. A. et al. Regression of microalbuminuria in type 1 diabetes. N. Engl. J. Med. 348, 2285–2293 (2003).

    Article  CAS  PubMed  Google Scholar 

  11. Retnakaran, R. et al. Risk factors for renal dysfunction in type 2 diabetes: U. K. Prospective Diabetes Study 74. Diabetes 55, 1832–1839 (2006).

    Article  CAS  PubMed  Google Scholar 

  12. Molitch, M. E. et al. Development and progression of renal insufficiency with and without albuminuria in adults with type 1 diabetes in the diabetes control and complications trial and the epidemiology of diabetes interventions and complications study. Diabetes Care 33, 1536–1543 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Adler, A. I. et al. Development and progression of nephropathy in type 2 diabetes: the United Kingdom Prospective Diabetes Study (UKPDS 64). Kidney Int. 63, 225–232 (2003). This paper has become the seminal natural history study for CKD in type 2 diabetes.

    Article  PubMed  Google Scholar 

  14. Bojestig, M., Arnqvist, H. J., Hermansson, G., Karlberg, B. E. & Ludvigsson, J. Declining incidence of nephropathy in insulin-dependent diabetes mellitus. N. Engl. J. Med. 330, 15–18 (1994).

    Article  CAS  PubMed  Google Scholar 

  15. Hovind, P. et al. Decreasing incidence of severe diabetic microangiopathy in type 1 diabetes. Diabetes Care 26, 1258–1264 (2003).

    Article  PubMed  Google Scholar 

  16. Gregg, E. W. et al. Changes in diabetes-related complications in the United States, 1990–2010. N. Engl. J. Med. 370, 1514–1523 (2014).

    Article  CAS  PubMed  Google Scholar 

  17. Andresdottir, G. et al. Improved survival and renal prognosis of patients with type 2 diabetes and nephropathy with improved control of risk factors. Diabetes Care 37, 1660–1667 (2014).

    Article  CAS  PubMed  Google Scholar 

  18. Andresdottir, G. et al. Improved prognosis of diabetic nephropathy in type 1 diabetes. Kidney Int. 87, 417–426 (2015).

    Article  CAS  PubMed  Google Scholar 

  19. International Diabetes Federation (IDF). IDF Diabetes Atlas 6th edn. IDF[online], (2013).

  20. de Boer, I. H. et al. Temporal trends in the prevalence of diabetic kidney disease in the United States. JAMA 305, 2532–2539 (2011). This article explores the implications of the rising diabetes prevalence and changing management on the prevalence of CKD in the United States.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Parving, H. H. et al. Prevalence and risk factors for microalbuminuria in a referred cohort of type II diabetic patients: a global perspective. Kidney Int. 69, 2057–2063 (2006). A global survey documenting the high frequency of CKD in patients with type 2 diabetes worldwide.

    Article  PubMed  Google Scholar 

  22. Pambianco, G. et al. The 30-year natural history of type 1 diabetes complications: the Pittsburgh Epidemiology of Diabetes Complications Study experience. Diabetes 55, 1463–1469 (2006).

    Article  CAS  PubMed  Google Scholar 

  23. Krolewski, A. S., Warram, J. H., Christlieb, A. R., Busick, E. J. & Kahn, C. R. The changing natural history of nephropathy in type I diabetes. Am. J. Med. 78, 785–794 (1985).

    Article  CAS  PubMed  Google Scholar 

  24. Rossing, P., Rossing, K., Jacobsen, P. & Parving, H. H. Unchanged incidence of diabetic nephropathy in IDDM patients. Diabetes 44, 739–743 (1995).

    Article  CAS  PubMed  Google Scholar 

  25. Sheen, Y. J. & Sheu, W. H. Risks of rapid decline renal function in patients with type 2 diabetes. World J. Diabetes 5, 835–846 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Thomas, M., Weekes, A. J. & Thomas, M. C. The management of diabetes in indigenous Australians from primary care. BMC Public Health 7, 303 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Lanting, L. C., Joung, I. M., Mackenbach, J. P., Lamberts, S. W. & Bootsma, A. H. Ethnic differences in mortality, end-stage complications, and quality of care among diabetic patients: a review. Diabetes Care 28, 2280–2288 (2005).

    Article  PubMed  Google Scholar 

  28. TODAY Study Group et al. A clinical trial to maintain glycemic control in youth with type 2 diabetes. N. Engl. J. Med. 366, 2247–2256 (2012).

    Article  PubMed Central  Google Scholar 

  29. Forsblom, C. et al. Competing-risk analysis of ESRD and death among patients with type 1 diabetes and macroalbuminuria. J. Am. Soc. Nephrol. 22, 537–544 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Jha, V. et al. Chronic kidney disease: global dimension and perspectives. Lancet 382, 260–272 (2013). A detailed review of the current global burden and anticipated future impact of CKD.

    Article  PubMed  Google Scholar 

  31. Lundbaek, K. Diabetic angiopathy: a specific vascular disease. Lancet 266, 377–379 (1954).

    Article  CAS  PubMed  Google Scholar 

  32. Root, H. F., Pote, W. H. Jr & Frehner, H. Triopathy of diabetes; sequence of neuropathy, retinopathy, and nephropathy in one hundred fifty-five patients. AMA Arch. Intern. Med. 94, 931–941 (1954).

    Article  CAS  PubMed  Google Scholar 

  33. Deckert, T., Feldt-Rasmussen, B., Borch-Johnsen, K., Jensen, T. & Kofoed-Enevoldsen, A. Albuminuria reflects widespread vascular damage. The Steno hypothesis. Diabetologia 32, 219–226 (1989).

    Article  CAS  PubMed  Google Scholar 

  34. Stehouwer, C. D. Endothelial dysfunction in diabetic nephropathy: state of the art and potential significance for non-diabetic renal disease. Nephrol. Dial. Transplant. 19, 778–781 (2004).

    Article  PubMed  Google Scholar 

  35. Kaiser, N. et al. Differential regulation of glucose transport and transporters by glucose in vascular endothelial and smooth muscle cells. Diabetes 42, 80–89 (1993).

    Article  CAS  PubMed  Google Scholar 

  36. Inoguchi, T. et al. High glucose level and free fatty acid stimulate reactive oxygen species production through protein kinase C-dependent activation of NAD(P)H oxidase in cultured vascular cells. Diabetes 49, 1939–1945 (2000).

    Article  CAS  PubMed  Google Scholar 

  37. Schaffer, S. W., Jong, C. J. & Mozaffari, M. Role of oxidative stress in diabetes-mediated vascular dysfunction: unifying hypothesis of diabetes revisited. Vascul. Pharmacol. 57, 139–149 (2012).

    Article  CAS  PubMed  Google Scholar 

  38. Brownlee, M. Biochemistry and molecular cell biology of diabetic complications. Nature 414, 813–820 (2001). A seminal paper describing the mechanics of glucose-dependent toxicity in endothelial cells and their role in microvascular complications.

    Article  CAS  PubMed  Google Scholar 

  39. Dugan, L. L. et al. AMPK dysregulation promotes diabetes-related reduction of superoxide and mitochondrial function. J. Clin. Invest. 123, 4888–4899 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Inoki, K. et al. mTORC1 activation in podocytes is a critical step in the development of diabetic nephropathy in mice. J. Clin. Invest. 121, 2181–2196 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Godel, M. et al. Role of mTOR in podocyte function and diabetic nephropathy in humans and mice. J. Clin. Invest. 121, 2197–2209 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Tikoo, K., Tripathi, D. N., Kabra, D. G., Sharma, V. & Gaikwad, A. B. Intermittent fasting prevents the progression of type I diabetic nephropathy in rats and changes the expression of Sir2 and p53. FEBS Lett. 581, 1071–1078 (2007).

    Article  CAS  PubMed  Google Scholar 

  43. Cooper, M. E. Pathogenesis, prevention, and treatment of diabetic nephropathy. Lancet 352, 213–219 (1998).

    Article  CAS  PubMed  Google Scholar 

  44. Blantz, R. C. Phenotypic characteristics of diabetic kidney involvement. Kidney Int. 86, 7–9 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Takiyama, Y. & Haneda, M. Hypoxia in diabetic kidneys. BioMed Res. Int. 2014, 837421 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Advani, A. & Gilbert, R. E. The endothelium in diabetic nephropathy. Semin. Nephrol. 32, 199–207 (2012).

    Article  CAS  PubMed  Google Scholar 

  47. Reidy, K., Kang, H. M., Hostetter, T. & Susztak, K. Molecular mechanisms of diabetic kidney disease. J. Clin. Invest. 124, 2333–2340 (2014). A detailed review of the pathobiology of DKD.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Hartleben, B. et al. Autophagy influences glomerular disease susceptibility and maintains podocyte homeostasis in aging mice. J. Clin. Invest. 120, 1084–1096 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Herman-Edelstein, M. et al. Dedifferentiation of immortalized human podocytes in response to transforming growth factor-β: a model for diabetic podocytopathy. Diabetes 60, 1779–1788 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Kato, H. et al. Wnt/-catenin pathway in podocytes integrates cell adhesion, differentiation, and survival. J. Biol. Chem. 286, 26003–26015 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Coward, R. & Fornoni, A. Insulin signaling: implications for podocyte biology in diabetic kidney disease. Curr. Opin. Nephrol. Hypertens. 24, 104–110 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Susztak, K., Raff, A. C., Schiffer, M. & Bottinger, E. P. Glucose-induced reactive oxygen species cause apoptosis of podocytes and podocyte depletion at the onset of diabetic nephropathy. Diabetes 55, 225–233 (2006).

    Article  CAS  PubMed  Google Scholar 

  53. Harindhanavudhi, T., Parks, A., Mauer, M. & Caramori, M. L. Podocyte structural parameters do not predict progression to diabetic nephropathy in normoalbuminuric type 1 diabetic patients. Am. J. Nephrol. 41, 277–283 (2015).

    Article  PubMed  Google Scholar 

  54. Meyer, T. W., Bennett, P. H. & Nelson, R. G. Podocyte number predicts long-term urinary albumin excretion in Pima Indians with type II diabetes and microalbuminuria. Diabetologia 42, 1341–1344 (1999).

    Article  CAS  PubMed  Google Scholar 

  55. Ponchiardi, C., Mauer, M. & Najafian, B. Temporal profile of diabetic nephropathy pathologic changes. Curr. Diabetes Rep. 13, 592–599 (2013).

    Article  CAS  Google Scholar 

  56. Dalla Vestra, M., Saller, A., Bortoloso, E., Mauer, M. & Fioretto, P. Structural involvement in type 1 and type 2 diabetic nephropathy. Diabetes Metab. 26 (Suppl. 4), 8–14 (2000).

    CAS  PubMed  Google Scholar 

  57. Lewko, B. & Stepinski, J. Hyperglycemia and mechanical stress: targeting the renal podocyte. J. Cell. Physiol. 221, 288–295 (2009).

    Article  CAS  PubMed  Google Scholar 

  58. Wada, T. et al. Nodular lesions and mesangiolysis in diabetic nephropathy. Clin. Exp. Nephrol. 17, 3–9 (2013).

    Article  PubMed  Google Scholar 

  59. Qian, Y., Feldman, E., Pennathur, S., Kretzler, M. & Brosius, F. C. 3rd. From fibrosis to sclerosis: mechanisms of glomerulosclerosis in diabetic nephropathy. Diabetes 57, 1439–1445 (2008).

    Article  CAS  PubMed  Google Scholar 

  60. Mauer, S. M. et al. Structural–functional relationships in diabetic nephropathy. J. Clin. Invest. 74, 1143–1155 (1984).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Weigert, C. et al. Evidence for a novel TGF-β1-independent mechanism of fibronectin production in mesangial cells overexpressing glucose transporters. Diabetes 52, 527–535 (2003).

    Article  CAS  PubMed  Google Scholar 

  62. Lemley, K. V. et al. Evolution of incipient nephropathy in type 2 diabetes mellitus. Kidney Int. 58, 1228–1237 (2000).

    Article  CAS  PubMed  Google Scholar 

  63. Chow, F., Ozols, E., Nikolic-Paterson, D. J., Atkins, R. C. & Tesch, G. H. Macrophages in mouse type 2 diabetic nephropathy: correlation with diabetic state and progressive renal injury. Kidney Int. 65, 116–128 (2004).

    Article  CAS  PubMed  Google Scholar 

  64. Chow, F. Y. et al. Monocyte chemoattractant protein-1 promotes the development of diabetic renal injury in streptozotocin-treated mice. Kidney Int. 69, 73–80 (2006).

    Article  CAS  PubMed  Google Scholar 

  65. Lim, A. K. & Tesch, G. H. Inflammation in diabetic nephropathy. Mediators Inflamm. 2012, 146154 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Chow, F. Y., Nikolic-Paterson, D. J., Ozols, E., Atkins, R. C. & Tesch, G. H. Intercellular adhesion molecule-1 deficiency is protective against nephropathy in type 2 diabetic db/db mice. J. Am. Soc. Nephrol. 16, 1711–1722 (2005).

    Article  CAS  PubMed  Google Scholar 

  67. Kanamori, H. et al. Inhibition of MCP-1/CCR2 pathway ameliorates the development of diabetic nephropathy. Biochem. Biophys. Res. Commun. 360, 772–777 (2007).

    Article  CAS  PubMed  Google Scholar 

  68. Osterby, R. & Gundersen, H. J. Glomerular size and structure in diabetes mellitus. I. Early abnormalities. Diabetologia 11, 225–229 (1975).

    Article  CAS  PubMed  Google Scholar 

  69. Rahmoune, H. et al. Glucose transporters in human renal proximal tubular cells isolated from the urine of patients with non-insulin-dependent diabetes. Diabetes 54, 3427–3434 (2005).

    Article  CAS  PubMed  Google Scholar 

  70. Vallon, V. et al. Knockout of Na-glucose transporter SGLT2 attenuates hyperglycemia and glomerular hyperfiltration but not kidney growth or injury in diabetes mellitus. Am. J. Renal Physiol. 304, F156–F167 (2013).

    Article  CAS  Google Scholar 

  71. Thomson, S. C. et al. Acute and chronic effects of SGLT2 blockade on glomerular and tubular function in the early diabetic rat. Am. J. Physiol. Regul. Integr. Comp. Physiol. 302, R75–R83 (2012).

    Article  CAS  PubMed  Google Scholar 

  72. Vallon, V. & Thomson, S. C. Renal function in diabetic disease models: the tubular system in the pathophysiology of the diabetic kidney. Annu. Rev. Physiol. 74, 351–375 (2012).

    Article  CAS  PubMed  Google Scholar 

  73. Najafian, B., Kim, Y., Crosson, J. T. & Mauer, M. Atubular glomeruli and glomerulotubular junction abnormalities in diabetic nephropathy. J. Am. Soc. Nephrol. 14, 908–917 (2003).

    Article  PubMed  Google Scholar 

  74. Russo, L. M. et al. Impaired tubular uptake explains albuminuria in early diabetic nephropathy. J. Am. Soc. Nephrol. 20, 489–494 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  75. Bohle, A. et al. The consequences of tubulo-interstitial changes for renal function in glomerulopathies. A morphometric and cytological analysis. Pathol. Res. Pract. 186, 135–144 (1990).

    Article  CAS  PubMed  Google Scholar 

  76. Wang, B. et al. E-cadherin expression is regulated by miR-192/215 by a mechanism that is independent of the profibrotic effects of transforming growth factor-beta. Diabetes 59, 1794–1802 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Tervaert, T. W. et al. Pathologic classification of diabetic nephropathy. J. Am. Soc. Nephrol. 21, 556–563 (2010).

    Article  PubMed  Google Scholar 

  78. Joslin, E. P. Arteriosclerosis in diabetes. Ann. Int. Med. 4, 54–66 (1930).

    Article  Google Scholar 

  79. Pirart, J. Glycaemic control and development of diabetic nephropathy. Acta Endocrinol. Suppl (Copenh.) 242, 41–42 (1981).

    CAS  Google Scholar 

  80. de Boer, I. H. & DCCT/EDIC Research Group. Kidney disease and related findings in the diabetes control and complications trial/epidemiology of diabetes interventions and complications study. Diabetes Care 37, 24–30 (2014). A pivotal study following the renal outcomes in the DCCT cohort of participants with type 1 diabetes.

    Article  CAS  PubMed  Google Scholar 

  81. Chalmers, J. & Cooper, M. E. UKPDS and the legacy effect. N. Engl. J. Med. 359, 1618–1620 (2008).

    Article  CAS  PubMed  Google Scholar 

  82. Patel, A. et al. Intensive blood glucose control and vascular outcomes in patients with type 2 diabetes. N. Engl. J. Med. 358, 2560–2572 (2008).

    Article  CAS  PubMed  Google Scholar 

  83. Cooper, M. E. & El-Osta, A. Epigenetics: mechanisms and implications for diabetic complications. Circul. Res. 107, 1403–1413 (2010).

    Article  CAS  Google Scholar 

  84. Kowluru, R. A. Mitochondria damage in the pathogenesis of diabetic retinopathy and in the metabolic memory associated with its continued progression. Curr. Med. Chem. 20, 3226–3233 (2013).

    Article  CAS  PubMed  Google Scholar 

  85. Pop-Busui, R. et al. DCCT and EDIC studies in type 1 diabetes: lessons for diabetic neuropathy regarding metabolic memory and natural history. Curr. Diabetes Rep. 10, 276–282 (2010).

    Article  Google Scholar 

  86. Penno, G. et al. HbA1c variability as an independent correlate of nephropathy, but not retinopathy, in patients with type 2 diabetes: the Renal Insufficiency and Cardiovascular Events (RIACE) Italian multicenter study. Diabetes Care 36, 2301–2310 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Waden, J. et al. A1C variability predicts incident cardiovascular events, microalbuminuria, and overt diabetic nephropathy in patients with type 1 diabetes. Diabetes 58, 2649–2655 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Roy, S., Sala, R., Cagliero, E. & Lorenzi, M. Overexpression of fibronectin induced by diabetes or high glucose: phenomenon with a memory. Proc. Natl Acad. Sci. USA 87, 404–408 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Thomas, M. C. Glycemic exposure, glycemic control, and metabolic karma in diabetic complications. Adv. Chronic Kidney Dis. 21, 311–317 (2014).

    Article  PubMed  Google Scholar 

  90. Holman, R. R. 10-year follow-up of intensive glucose control in type 2 diabetes N. Engl. J. Med. 359, 1577–1589 (2008).

    Article  CAS  PubMed  Google Scholar 

  91. Bianchi, C. & Del Prato, S. Metabolic memory and individual treatment aims in type 2 diabetes — outcome-lessons learned from large clinical trials. Rev. Diabet. Stud. 8, 432–440 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  92. Derby, L., Warram, J. H., Laffel, L. M. & Krolewski, A. S. Elevated blood pressure predicts the development of persistent proteinuria in the presence of poor glycemic control, in patients with type I diabetes. Diabete Metab. 15, 320–326 (1989).

    CAS  PubMed  Google Scholar 

  93. Schmitz, A., Vaeth, M. & Mogensen, C. E. Systolic blood pressure relates to the rate of progression of albuminuria in NIDDM. Diabetologia 37, 1251–1258 (1994).

    Article  CAS  PubMed  Google Scholar 

  94. Tanaka, Y. et al. Role of glycemic control and blood pressure in the development and progression of nephropathy in elderly Japanese NIDDM patients. Diabetes Care 21, 116–120 (1998).

    Article  CAS  PubMed  Google Scholar 

  95. Ayodele, O. E., Alebiosu, C. O. & Salako, B. L. Diabetic nephropathy — a review of the natural history, burden, risk factors and treatment. J. Natl Med. Assoc. 96, 1445–1454 (2004).

    PubMed  PubMed Central  Google Scholar 

  96. Parving, H. H. et al. Impaired autoregulation of glomerular filtration rate in type 1 (insulin-dependent) diabetic patients with nephropathy. Diabetologia 27, 547–552 (1984).

    Article  CAS  PubMed  Google Scholar 

  97. Christensen, P. K., Hansen, H. P. & Parving, H. H. Impaired autoregulation of GFR in hypertensive non-insulin dependent diabetic patients. Kidney Int. 52, 1369–1374 (1997).

    Article  CAS  PubMed  Google Scholar 

  98. Tolonen, N. et al. Lipid abnormalities predict progression of renal disease in patients with type 1 diabetes. Diabetologia 52, 2522–2530 (2009).

    Article  CAS  PubMed  Google Scholar 

  99. Thomas, M. C. et al. Serum lipids and the progression of nephropathy in type 1 diabetes. Diabetes Care 29, 317–322 (2006).

    Article  CAS  PubMed  Google Scholar 

  100. Moore, K. J. & Fisher, E. A. Dysfunctional HDL takes its toll in chronic kidney disease. Immunity 38, 628–630 (2013).

    Article  CAS  PubMed  Google Scholar 

  101. Jenkins, A. J. et al. Lipoproteins in the DCCT/EDIC cohort: associations with diabetic nephropathy. Kidney Int. 64, 817–828 (2003).

    Article  CAS  PubMed  Google Scholar 

  102. Makinen, V. P. et al. Triglyceride–cholesterol imbalance across lipoprotein subclasses predicts diabetic kidney disease and mortality in type 1 diabetes: the FinnDiane Study. J. Intern. Med. 273, 383–395 (2013).

    Article  CAS  PubMed  Google Scholar 

  103. Reis, A. et al. Top-down lipidomics of low density lipoprotein reveal altered lipid profiles in advanced chronic kidney disease. J. Lipid Res. 56, 13–22 (2014).

    Google Scholar 

  104. Meikle, P. J., Wong, G., Barlow, C. K. & Kingwell, B. A. Lipidomics: potential role in risk prediction and therapeutic monitoring for diabetes and cardiovascular disease. Pharmacol. Ther. 143, 12–23 (2014).

    Article  CAS  PubMed  Google Scholar 

  105. Parvanova, A. I. et al. Insulin resistance and microalbuminuria: a cross-sectional, case-control study of 158 patients with type 2 diabetes and different degrees of urinary albumin excretion. Diabetes 55, 1456–1462 (2006).

    Article  CAS  PubMed  Google Scholar 

  106. Thorn, L. M. et al. Metabolic syndrome in type 1 diabetes: association with diabetic nephropathy and glycemic control (the FinnDiane study). Diabetes Care 28, 2019–2024 (2005).

    Article  PubMed  Google Scholar 

  107. Groop, L. et al. Insulin resistance, hypertension and microalbuminuria in patients with type 2 (non-insulin-dependent) diabetes mellitus. Diabetologia 36, 642–647 (1993).

    Article  CAS  PubMed  Google Scholar 

  108. Groop, P. H., Forsblom, C. & Thomas, M. C. Mechanisms of disease: pathway-selective insulin resistance and microvascular complications of diabetes. Nat. Clin. Pract. Endocrinol. Metab. 1, 100–110 (2005).

    Article  CAS  PubMed  Google Scholar 

  109. Brown, M. S. & Goldstein, J. L. Selective versus total insulin resistance: a pathogenic paradox. Cell Metabolism 7, 95–96 (2008).

    Article  CAS  PubMed  Google Scholar 

  110. Yokoyama, H. et al. Higher incidence of diabetic nephropathy in type 2 than in type 1 diabetes in early-onset diabetes in Japan. Kidney Int. 58, 302–311 (2000).

    Article  CAS  PubMed  Google Scholar 

  111. Sharma, K. The link between obesity and albuminuria: adiponectin and podocyte dysfunction. Kidney Int. 76, 145–148 (2009).

    Article  CAS  PubMed  Google Scholar 

  112. Tsuboi, N., Utsunomiya, Y. & Hosoya, T. Obesity-related glomerulopathy and the nephron complement. Nephrol. Dial. Transplant. 28 (Suppl. 4), iv108–iv113 (2013).

    PubMed  Google Scholar 

  113. The Diabetes Control and Complications Trial Research Group. Clustering of long-term complications in families with diabetes in the diabetes control and complications trial. Diabetes 46, 1829–1839 (1997).

    Article  Google Scholar 

  114. Thomas, M. C., Groop, P. H. & Tryggvason, K. Towards understanding the inherited susceptibility for nephropathy in diabetes. Curr. Opin. Nephrol. Hypertens. 21, 195–202 (2012). A detailed review of the role of genetics in determining the risk for DKD.

    Article  CAS  PubMed  Google Scholar 

  115. Okabe, J. et al. Distinguishing hyperglycemic changes by Set7 in vascular endothelial cells. Circul. Res. 110, 1067–1076 (2012).

    Article  CAS  Google Scholar 

  116. Brasacchio, D. et al. Hyperglycemia induces a dynamic cooperativity of histone methylase and demethylase enzymes associated with gene-activating epigenetic marks that coexist on the lysine tail. Diabetes 58, 1229–1236 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. El-Osta, A. et al. Transient high glucose causes persistent epigenetic changes and altered gene expression during subsequent normoglycemia. J. Exp. Med. 205, 2409–2417 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Bird, A. Perceptions of epigenetics. Nature 447, 396–398 (2007).

    Article  CAS  PubMed  Google Scholar 

  119. Rakyan, V. K., Down, T. A., Balding, D. J. & Beck, S. Epigenome-wide association studies for common human diseases. Nat. Rev. Genet. 12, 529–541 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Guerrero-Bosagna, C. & Skinner, M. K. Environmentally induced epigenetic transgenerational inheritance of phenotype and disease. Mol. Cell. Endocrinol. 3–8 (2011).

    Google Scholar 

  121. Ko, Y. A. et al. Cytosine methylation changes in enhancer regions of core pro-fibrotic genes characterize kidney fibrosis development. Genome Biol. 14, R108 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  122. Miao, F. et al. Evaluating the role of epigenetic histone modifications in the metabolic memory of type 1 diabetes. Diabetes 63, 1748–1762 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Perera, F. & Herbstman, J. Prenatal environmental exposures, epigenetics, and disease. Reprod. Toxicol. 31, 363–373 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Nelson, R. G., Morgenstern, H. & Bennett, P. H. Intrauterine diabetes exposure and the risk of renal disease in diabetic Pima Indians. Diabetes 47, 1489–1493 (1998).

    Article  CAS  PubMed  Google Scholar 

  125. Lemley, K. V. A basis for accelerated progression of diabetic nephropathy in Pima Indians. Kidney Int. 63, S38–S42 (2003).

    Article  Google Scholar 

  126. Nelson, R. G., Morgenstern, H. & Bennett, P. H. Birth weight and renal disease in Pima Indians with type 2 diabetes mellitus. Am. J. Epidemiol. 148, 650–656 (1998).

    Article  CAS  PubMed  Google Scholar 

  127. Singh, G. R. & Hoy, W. E. Kidney volume, blood pressure, and albuminuria: findings in an Australian aboriginal community. Am. J. Kidney Dis. 43, 254–259 (2004).

    Article  PubMed  Google Scholar 

  128. Weil, E. J., Curtis, J. M., Hanson, R. L., Knowler, W. C. & Nelson, R. G. The impact of disadvantage on the development and progression of diabetic kidney disease. Clin. Nephrol. 74 (Suppl. 1), S32–S38 (2010).

    PubMed  Google Scholar 

  129. Rognant, N., Lemoine, S., Laville, M., Hadj-Aissa, A. & Dubourg, L. Performance of the chronic kidney disease epidemiology collaboration equation to estimate glomerular filtration rate in diabetic patients. Diabetes Care 34, 1320–1322 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  130. Shlipak, M. G. et al. Cystatin C versus creatinine in determining risk based on kidney function. N. Engl. J. Med. 369, 932–943 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Krolewski, A. S., Gohda, T. & Niewczas, M. A. Progressive renal decline as the major feature of diabetic nephropathy in type 1 diabetes. Clin. Exp. Nephrol. 18, 571–583 (2014). This paper highlights the importance of identifying and targeting renal decline when managing diabetes and DKD.

    Article  CAS  PubMed  Google Scholar 

  132. Hsu, C. Y. & Bansal, N. Measured GFR as “gold standard”—all that glitters is not gold? Clin. J. Am. Soc. Nephrol. 6, 1813–1814 (2011).

    Article  PubMed  Google Scholar 

  133. Nori, U. S., Pesavento, T. E. & Hebert, L. A. Measured GFR has limited clinical utility. Am. J. Kidney Dis. 57, 180; discussion 180–181 (2011).

    Article  PubMed  Google Scholar 

  134. Thomas, M. C. The assessment and management of albuminuria in primary care. Diabetes Res. Clin. Pract. 80, 83–88 (2008).

    Article  CAS  PubMed  Google Scholar 

  135. American Diabetes Association. (9). Microvascular complications and foot care. Diabetes Care 38, S58–S66 (2015).

    Article  Google Scholar 

  136. KDOQI. KDOQI clinical practice guidelines and clinical practice recommendations for diabetes and chronic kidney disease. Am. J. Kidney Dis. 49, S12–S154 (2007).

    Article  Google Scholar 

  137. Lambers Heerspink, H. J. et al. Comparison of different measures of urinary protein excretion for prediction of renal events. J. Am. Soc. Nephrol. 21, 1355–1360 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Fotheringham, J., Campbell, M. J., Fogarty, D. G., El Nahas, M. & Ellam, T. Estimated albumin excretion rate versus urine albumin–creatinine ratio for the estimation of measured albumin excretion rate: derivation and validation of an estimated albumin excretion rate equation. Am. J. Kidney Dis. 63, 405–414 (2014).

    Article  CAS  PubMed  Google Scholar 

  139. Amin, A. P. et al. The synergistic relationship between estimated GFR and microalbuminuria in predicting long-term progression to ESRD or death in patients with diabetes: results from the Kidney Early Evaluation Program (KEEP). Am. J. Kidney Dis. 61, S12–S23 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  140. Thomas, M. C., Viberti, G. & Groop, P. H. Screening for chronic kidney disease in patients with diabetes: are we missing the point? Nat. Clin. Pract. Nephrol. 4, 2–3 (2008).

    Article  PubMed  Google Scholar 

  141. Elley, C. R. et al. Derivation and validation of a renal risk score for people with type 2 diabetes. Diabetes Care 36, 3113–3120 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Jardine, M. J. et al. Prediction of kidney-related outcomes in patients with type 2 diabetes. Am. J. Kidney Dis. 60, 770–778 (2012).

    Article  CAS  PubMed  Google Scholar 

  143. Thomas, M. C. & Groop, P. H. Diabetes: Assessing renal risk in patients with type 2 diabetes. Nat. Rev. Nephrol. 9, 559–560 (2013).

    Article  PubMed  Google Scholar 

  144. Roscioni, S. S. et al. A urinary peptide biomarker set predicts worsening of albuminuria in type 2 diabetes mellitus. Diabetologia 56, 259–267 (2013).

    Article  CAS  PubMed  Google Scholar 

  145. Sharma, K. et al. Metabolomics reveals signature of mitochondrial dysfunction in diabetic kidney disease. J. Am. Soc. Nephrol. 24, 1901–1912 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. McClelland, A., Hagiwara, S. & Kantharidis, P. Where are we in diabetic nephropathy: microRNAs and biomarkers? Curr. Opin. Nephrol. Hypertens. 23, 80–86 (2014).

    Article  CAS  PubMed  Google Scholar 

  147. Gæ de, P., Vedel, P., Parving, H.-H. & Pedersen, O. Intensified multifactorial intervention in patients with type 2 diabetes mellitus and microalbuminuria: the Steno type 2 randomised study. Lancet 353, 617–622 (1999).

    Article  Google Scholar 

  148. Gaede, P. et al. Multifactorial intervention and cardiovascular disease in patients with type 2 diabetes. N. Engl. J. Med. 348, 383–393 (2003). A seminal study demonstrating the utility of multifactorial intervention in patients with type 2 diabetes and established CKD.

    Article  PubMed  Google Scholar 

  149. Zhang, Z. et al. Renoprotective role of the vitamin D receptor in diabetic nephropathy. Kidney Int. 73, 163–171 (2008).

    Article  CAS  PubMed  Google Scholar 

  150. Fioretto, P., Steffes, M. W., Sutherland, D. E. R., Goetz, F. C. & Mauer, M. Reversal of lesions of diabetic nephropathy after pancreas transplantation. N. Engl. J. Med. 339, 69–75 (1998).

    Article  CAS  PubMed  Google Scholar 

  151. Coca, S. G., Ismail-Beigi, F., Haq, N., Krumholz, H. M. & Parikh, C. R. Role of intensive glucose control in development of renal end points in type 2 diabetes mellitus: systematic review and meta-analysis intensive glucose control in type 2 diabetes. Arch. Intern. Med. 172, 761–769 (2012). A meta-analysis exploring the utility of glucose control on renal outcomes in type 2 diabetes.

    Article  PubMed  PubMed Central  Google Scholar 

  152. Fullerton, B. et al. Intensive glucose control versus conventional glucose control for type 1 diabetes mellitus. Cochrane Database Syst. Rev. 2, CD009122 (2014).

    Google Scholar 

  153. DCCT/EDIC Research Group. Intensive diabetes therapy and glomerular filtration rate in type 1 diabetes. N. Engl. J. Med. 365, 2366–2376 (2011).

    Article  CAS  Google Scholar 

  154. ADVANCE Collaborative Group. Intensive blood glucose control and vascular outcomes in patients with type 2 diabetes. N. Engl. J. Med. 358, 2560–2572 (2008).

    Article  Google Scholar 

  155. Zoungas, S. et al. Follow-up of blood-pressure lowering and glucose control in type 2 diabetes. N. Engl. J. Med. 371, 1392–1406 (2014).

    Article  CAS  PubMed  Google Scholar 

  156. Zoungas, S. et al. Severe hypoglycemia and risks of vascular events and death. N. Engl. J. Med. 363, 1410–1418 (2010).

    Article  CAS  PubMed  Google Scholar 

  157. Shurraw, S. et al. Association between glycemic control and adverse outcomes in people with diabetes mellitus and chronic kidney disease: a population-based cohort study. Arch. Intern. Med. 171, 1920–1927 (2011).

    Article  PubMed  Google Scholar 

  158. Schernthaner, G., Mogensen, C. E. & Schernthaner, G. H. The effects of GLP-1 analogues, DPP-4 inhibitors and SGLT2 inhibitors on the renal system. Diab. Vasc. Dis. Res. 11, 306–323 (2014).

    Article  CAS  PubMed  Google Scholar 

  159. Groop, P. H. et al. Linagliptin lowers albuminuria on top of recommended standard treatment in patients with type 2 diabetes and renal dysfunction. Diabetes Care 36, 3460–3468 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Tanaka, T., Higashijima, Y., Wada, T. & Nangaku, M. The potential for renoprotection with incretin-based drugs. Kidney Int. 86, 701–711 (2014).

    Article  CAS  PubMed  Google Scholar 

  161. Sarafidis, P. A., Stafylas, P. C., Georgianos, P. I., Saratzis, A. N. & Lasaridis, A. N. Effect of thiazolidinediones on albuminuria and proteinuria in diabetes: a meta-analysis. Am. J. Kidney Dis. 55, 835–847 (2010).

    Article  CAS  PubMed  Google Scholar 

  162. Kohan, D. E., Fioretto, P., Tang, W. & List, J. F. Long-term study of patients with type 2 diabetes and moderate renal impairment shows that dapagliflozin reduces weight and blood pressure but does not improve glycemic control. Kidney Int. 85, 962–971 (2014).

    Article  CAS  PubMed  Google Scholar 

  163. Boehringer Ingelheim. MARLINA — T2D: Efficacy, Safety & Modification of Albuminuria in Type 2 Diabetes Subjects With Renal Disease With LINAgliptin. NCT01792518. ClinicalTrials.gov[online], (2015).

  164. Janssen Research & Development. Evaluation of the Effects of Canagliflozin on Renal and Cardiovascular Outcomes in Participants With Diabetic Nephropathy (CREDENCE).NCT02065791. ClinicalTrials.gov[online], (2015).

  165. Emdin, C. A. et al. Blood pressure lowering in type 2 diabetes: a systematic review and meta-analysis. JAMA 313, 603–615 (2015). A meta-analysis exploring the utility of blood pressure control on renal outcomes in type 2 diabetes.

    Article  CAS  PubMed  Google Scholar 

  166. UK Prospective Diabetes Study Group. Tight blood pressure control and risk of macrovascular and microvascular complications in type 2 diabetes: UKPDS 38. BMJ 317, 703–713 (1998).

    Article  PubMed Central  Google Scholar 

  167. Strippoli, G. F., Craig, M., Deeks, J. J., Schena, F. P. & Craig, J. C. Effects of angiotensin converting enzyme inhibitors and angiotensin II receptor antagonists on mortality and renal outcomes in diabetic nephropathy: systematic review. BMJ 329, 828 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. de Galan, B. E. et al. Lowering blood pressure reduces renal events in type 2 diabetes. J. Am. Soc. Nephrol. 20, 883–892 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Tsika, E. P., Poulimenos, L. E., Boudoulas, K. D. & Manolis, A. J. The J-curve in arterial hypertension: fact or fallacy? Cardiology 129, 126–135 (2014).

    Article  PubMed  Google Scholar 

  170. Lv, J. et al. Effects of intensive blood pressure lowering on cardiovascular and renal outcomes: a systematic review and meta-analysis. PLoS Med. 9, e1001293 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  171. Van Buren, P. N. & Toto, R. D. The pathogenesis and management of hypertension in diabetic kidney disease. Med. Clin. North Amer. 97, 31–51 (2013).

    Article  Google Scholar 

  172. James, P. A. et al. 2014 evidence-based guideline for the management of high blood pressure in adults: report from the panel members appointed to the Eighth Joint National Committee (JNC 8). JAMA 311, 507–520 (2014).

    Article  CAS  PubMed  Google Scholar 

  173. Casas, J. P. et al. Effect of inhibitors of the rennin–angiotensin system and other antihypertensive drugs on renal outcomes: systematic review and meta-analysis. Lancet 366, 2026–2033 (2005).

    Article  CAS  PubMed  Google Scholar 

  174. Lewis, E. J., Hunsicker, L. G., Bain, R. P. & Rohde, R. D. The effect of angiotensin-converting-enzyme inhibition on diabetic nephropathy. The Collaborative Study Group. N. Engl. J. Med. 329, 1456–1462 (1993).

    Article  CAS  PubMed  Google Scholar 

  175. Atkins, R. C. et al. Proteinuria reduction and progression to renal failure in patients with type 2 diabetes mellitus and overt nephropathy. Am. J. Kidney Dis. 45, 281–287 (2005).

    Article  PubMed  Google Scholar 

  176. United States Renal Data System. USRDS 2013 Annual Data Report: Atlas of Chronic Kidney Disease and End-Stage Renal Disease in the United States National Institutes of Health (National Institute of Diabetes and Digestive and Kidney Diseases, 2013).

  177. Tobe, S. W. et al. Cardiovascular and renal outcomes with telmisartan, ramipril, or both in people at high renal risk: results from the ONTARGET and TRANSCEND studies. Circulation 123, 1098–1107 (2011).

    Article  CAS  PubMed  Google Scholar 

  178. Parving, H. H. et al. Cardiorenal end points in a trial of aliskiren for type 2 diabetes. N. Engl. J. Med. 367, 2204–2213 (2012).

    Article  CAS  PubMed  Google Scholar 

  179. Bomback, A. S., Kshirsagar, A. V., Amamoo, M. A. & Klemmer, P. J. Change in proteinuria after adding aldosterone blockers to ACE inhibitors or angiotensin receptor blockers in CKD: a systematic review. Am. J. Kidney Dis. 51, 199–211 (2008).

    Article  PubMed  Google Scholar 

  180. Ruilope, L. M. et al. Rationale, design, and baseline characteristics of ARTS-DN: a randomized study to assess the safety and efficacy of finerenone in patients with type 2 diabetes mellitus and a clinical diagnosis of diabetic nephropathy. Am. J. Nephrol. 40, 572–581 (2015).

    Article  CAS  Google Scholar 

  181. Bakris, G. L. A practical approach to achieving recommended blood pressure goals in diabetic patients. Arch. Intern. Med. 161, 2661–2667 (2001).

    Article  CAS  PubMed  Google Scholar 

  182. Bakris, G. L. et al. Renal outcomes with different fixed-dose combination therapies in patients with hypertension at high risk for cardiovascular events (ACCOMPLISH): a prespecified secondary analysis of a randomised controlled trial. Lancet 375, 1173–1181 (2010).

    Article  CAS  PubMed  Google Scholar 

  183. American Diabetes Association. Standards of medical care in diabetes — 2014. Diabetes Care 37, S14–S80 (2014).

    Article  Google Scholar 

  184. Griffin, S. J. et al. Effect of early intensive multifactorial therapy on 5-year cardiovascular outcomes in individuals with type 2 diabetes detected by screening (ADDITION-Europe): a cluster-randomised trial. Lancet 378, 156–167 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  185. Haynes, R. et al. Effects of lowering LDL cholesterol on progression of kidney disease. J. Am. Soc. Nephrol. 25, 1825–1833 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. de Zeeuw, D. et al. Renal effects of atorvastatin and rosuvastatin in patients with diabetes who have progressive renal disease (PLANET I): a randomised clinical trial. Lancet Diabetes Endocrinol. 3, 181–190 (2015).

    Article  CAS  PubMed  Google Scholar 

  187. Jun, M. et al. Effects of fibrates in kidney disease: a systematic review and meta-analysis. J. Am. College Cardiol. 60, 2061–2071 (2012).

    Article  CAS  Google Scholar 

  188. Park, C. W. et al. PPARα agonist fenofibrate improves diabetic nephropathy in db/db mice. Kidney Int. 69, 1511–1517 (2006).

    Article  CAS  PubMed  Google Scholar 

  189. Ren, S. et al. PPAR activation upregulates nephrin expression in human embryonic kidney epithelial cells and podocytes by a dual mechanism. Biochem. Biophys. Res. Commun. 338, 1818–1824 (2005).

    Article  CAS  PubMed  Google Scholar 

  190. Zhao, X. & Li, L. Y. PPAR-α agonist fenofibrate induces renal CYP enzymes and reduces blood pressure and glomerular hypertrophy in Zucker diabetic fatty rats. Am. J. Nephrol. 28, 598–606 (2008).

    Article  CAS  PubMed  Google Scholar 

  191. Ansquer, J. C. et al. Effect of fenofibrate on kidney function: a 6-week randomized crossover trial in healthy people. Am. J. Kidney Dis. 51, 904–913 (2008).

    Article  CAS  PubMed  Google Scholar 

  192. Hansen, H. P., Tauber-Lassen, E., Jensen, B. R. & Parving, H. H. Effect of dietary protein restriction on prognosis in patients with diabetic nephropathy. Kidney Int. 62, 220–228 (2002).

    Article  PubMed  Google Scholar 

  193. Chadban, S. et al. The CARI guidelines. Prevention and management of chronic kidney disease in type 2 diabetes. Nephrology 15 (Suppl. 1), S162–S194 (2010).

    PubMed  Google Scholar 

  194. Bello, A. K. et al. Impact of weight change on albuminuria in the general population. Nephrol. Dial. Transplant. 22, 1619–1627 (2007).

    Article  CAS  PubMed  Google Scholar 

  195. Van Huffel, L. et al. Dietary restriction and exercise for diabetic patients with chronic kidney disease: a systematic review. PLoS ONE 9, e113667 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. The Look AHEAD Research Group Effect of a long-term behavioural weight loss intervention on nephropathy in overweight or obese adults with type 2 diabetes: a secondary analysis of the Look AHEAD randomised clinical trial. Lancet. Diabetes Endocrinol. 2, 801–809 (2014).

    Article  PubMed Central  Google Scholar 

  197. Carlsson, L. M. et al. The incidence of albuminuria after bariatric surgery and usual care in Swedish obese subjects (SOS): a prospective controlled intervention trial. Int. J. Obes. 39, 169–175 (2015).

    Article  CAS  Google Scholar 

  198. Evert, A. B. et al. Nutrition therapy recommendations for the management of adults with diabetes. Diabetes Care 37 (Suppl. 1), S120–S143 (2014).

    Article  PubMed  Google Scholar 

  199. Stevens, P. E., Levin, A. & Kidney Disease: Improving Global Outcomes Chronic Kidney Disease Guideline Development Work Group Members. Evaluation and management of chronic kidney disease: synopsis of the kidney disease: improving global outcomes 2012 clinical practice guideline. Ann. Intern. Med. 158, 825–830 (2013).

    Article  PubMed  Google Scholar 

  200. Lee, C. C., Sharp, S. J., Wexler, D. J. & Adler, A. I. Dietary intake of eicosapentaenoic and docosahexaenoic acid and diabetic nephropathy: cohort analysis of the diabetes control and complications trial. Diabetes Care 33, 1454–1456 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Miller, E. R. 3rdet al. The effects of n-3 long-chain polyunsaturated fatty acid supplementation on biomarkers of kidney injury in adults with diabetes: results of the GO-FISH trial. Diabetes Care 36, 1462–1469 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. de Ferranti, S. D. et al. Type 1 diabetes mellitus and cardiovascular disease: a scientific statement from the American Heart Association and American Diabetes Association. Circulation 130, 1110–1130 (2014).

    Article  PubMed  Google Scholar 

  203. Newman, D. J. et al. Systematic review on urine albumin testing for early detection of diabetic complications. Health Technol. Assess. 9, iii–vi,xiii–163 (2005).

    Article  CAS  PubMed  Google Scholar 

  204. Gaede, P. Intensive glucose control and cardiovascular disease in type 2 diabetes — should we change the recommended target for glycated hemoglobin? Commentary to ACCORD and ADVANCE trials. Pol. Arch. Med. Wewn. 118, 619–621 (2008).

    PubMed  Google Scholar 

  205. Shepherd, J. et al. Intensive lipid lowering with atorvastatin in patients with coronary artery disease, diabetes, and chronic kidney disease. Mayo Clin. Proc. 83, 870–879 (2008).

    Article  CAS  PubMed  Google Scholar 

  206. Palmer, S. C. et al. Benefits and harms of statin therapy for persons with chronic kidney disease: a systematic review and meta-analysis. Ann. Intern. Med. 157, 263–275 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  207. Pignone, M. et al. Aspirin for primary prevention of cardiovascular events in people with diabetes: a position statement of the American Diabetes Association, a scientific statement of the American Heart Association, and an expert consensus document of the American College of Cardiology Foundation. Circulation 121, 2694–2701 (2010).

    Article  PubMed  Google Scholar 

  208. Kim, A. J. et al. Low-dose aspirin for prevention of cardiovascular disease in patients with chronic kidney disease. PLoS ONE 9, e104179 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  209. Dasgupta, A. et al. Clinical outcomes of patients with diabetic nephropathy randomized to clopidogrel plus aspirin versus aspirin alone (a post hoc analysis of the clopidogrel for high atherothrombotic risk and ischemic stabilization, management, and avoidance [CHARISMA] trial). Am. J. Cardiol. 103, 1359–1363 (2009).

    Article  CAS  PubMed  Google Scholar 

  210. Johnson, R. J., Freehally, J. & Floege, J. Comprehensive Clinical Nephrology, (Elsevier Health Sciences, 2014).

    Google Scholar 

  211. National Institute for Health and Care Excellence (NICE). Chronic Kidney Disease: Early Identification and Management of Chronic Kidney Disease in Adults in Primary and Secondary Care. NICE Clinical Guideline 73 (NICE, 2008).

  212. KDIGO. Clinical Practice Guideline for the Evaluation and Management of Chronic Kidney Disease KDIGO [online], (2012).

  213. Dukes, J. L., Seelam, S., Lentine, K. L., Schnitzler, M. A. & Neri, L. Health-related quality of life in kidney transplant patients with diabetes. Clin. Transplant. 27, E554–E562 (2013).

    CAS  PubMed  Google Scholar 

  214. Campbell, K. H. et al. Association between estimated GFR, health-related quality of life, and depression among older adults with diabetes: the Diabetes and Aging study. Am. J. Kidney Dis. 62, 541–548 (2013). A key paper exploring the impact of CKD on psychological health and quality of life of affected patients.

    Article  PubMed  PubMed Central  Google Scholar 

  215. Hotu, C. et al. A community-based model of care improves blood pressure control and delays progression of proteinuria, left ventricular hypertrophy and diastolic dysfunction in Maori and Pacific patients with type 2 diabetes and chronic kidney disease: a randomized controlled trial. Nephrol. Dial. Transplant. 25, 3260–3266 (2010).

    Article  PubMed  Google Scholar 

  216. Rayner, H. C. et al. Does community-wide chronic kidney disease management improve patient outcomes? Nephrol. Dial. Transplant. 29, 644–649 (2014).

    Article  PubMed  Google Scholar 

  217. Thomas, B. Improving blood pressure control among adults with CKD and diabetes: provider-focused quality improvement using electronic health records. Adv. Chronic Kidney Dis. 18, 406–411 (2011).

    Article  PubMed  Google Scholar 

  218. Cortes-Sanabria, L. et al. Improving care of patients with diabetes and CKD: a pilot study for a cluster-randomized trial. Am. J. Kidney Dis. 51, 777–788 (2008).

    Article  PubMed  Google Scholar 

  219. Thomas, M. C., MacIsaac, R. J., Tsalamandris, C., Power, D. & Jerums, G. Unrecognized anemia in patients with diabetes: a cross-sectional survey. Diabetes Care 26, 1164–1169 (2003).

    Article  PubMed  Google Scholar 

  220. Parfrey, P. S. Critical appraisal of randomized controlled trials of anemia correction in patients with renal failure. Curr. Opin. Nephrol. Hypertens. 20, 177–181 (2011). A review of the utility of correcting anaemia in patients with CKD.

    Article  PubMed  Google Scholar 

  221. Block, G. A. et al. Phosphate homeostasis in CKD: report of a scientific symposium sponsored by the National Kidney Foundation. Am. J. Kidney Dis. 62, 457–473 (2013).

    Article  PubMed  Google Scholar 

  222. Nelson, R. G. et al. Development and progression of renal disease in Pima Indians with non-insulin-dependent diabetes mellitus. Diabetic Renal Disease Study Group. N. Engl. J. Med. 335, 1636–1642 (1996).

    Article  CAS  PubMed  Google Scholar 

  223. Burrows, N. R., Li, Y. & Geiss, L. S. Incidence of treatment for end-stage renal disease among individuals with diabetes in the U. S. continues to decline. Diabetes Care 33, 73–77 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  224. Zoccali, C., Kramer, A. & Jager, K. The databases: renal replacement therapy since 1989 — the European Renal Association and European Dialysis and Transplant Association (ERA-EDTA). Clin. J. Am. Soc. Nephrol. 4 (Suppl. 1), S18–S22 (2009).

    Article  PubMed  Google Scholar 

  225. Thomas, M. C. Emerging drugs for managing kidney disease in patients with diabetes. Expert Opin. Emerg. Drugs 18, 55–70 (2013). A detailed review of the new treatments being developed for DKD.

    Article  CAS  PubMed  Google Scholar 

  226. Mauer, M. et al. Renal and retinal effects of enalapril and losartan in type 1 diabetes. N. Engl. J. Med. 361, 40–51 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  227. Bilous, R. et al. Effect of candesartan on microalbuminuria and albumin excretion rate in diabetes: three randomized trials. Ann. Intern. Med. 151, 11–20 (2009).

    Article  PubMed  Google Scholar 

  228. Chakkarwar, V. A. Smoking in diabetic nephropathy: sparks in the fuel tank? World J. Diabetes 3, 186–195 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  229. Hoy, W. E. et al. The multidimensional nature of renal disease: rates and associations of albuminuria in an Australian Aboriginal community. Kidney Int. 54, 1296–1304 (1998).

    Article  CAS  PubMed  Google Scholar 

  230. Nymark, M. et al. Serum lipopolysaccharide activity is associated with the progression of kidney disease in Finnish patients with type 1 diabetes. Diabetes Care 32, 1689–1693 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  231. Thakar, C. V., Christianson, A., Himmelfarb, J. & Leonard, A. C. Acute kidney injury episodes and chronic kidney disease risk in diabetes mellitus. Clin. J. Am. Soc. Nephrol. 6, 2567–2572 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  232. Forbes, J. M. & Cooper, M. E. Mechanisms of diabetic complications. Physiol. Rev. 93, 137–188 (2013). A detailed review of the molecular biology of diabetic complications.

    Article  CAS  PubMed  Google Scholar 

  233. Ahmed, S. B. et al. Oral contraceptives, angiotensin-dependent renal vasoconstriction, and risk of diabetic nephropathy. Diabetes Care 28, 1988–1994 (2005).

    Article  CAS  PubMed  Google Scholar 

  234. Hovind, P., Rossing, P., Johnson, R. J. & Parving, H. H. Serum uric acid as a new player in the development of diabetic nephropathy. J. Renal Nutr. 21, 124–127 (2011).

    Article  CAS  Google Scholar 

  235. Zoppini, G. et al. Lower levels of 25-hydroxyvitamin D3 are associated with a higher prevalence of microvascular complications in patients with type 2 diabetes. BMJ Open Diab. Res. Care 3, e000058 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  236. Forsblom, C. et al. Added value of soluble tumor necrosis factor-α receptor 1 as a biomarker of ESRD risk in patients with type 1 diabetes. Diabetes Care 37, 2334–2342 (2014).

    Article  CAS  PubMed  Google Scholar 

  237. Jha, J. C., Jandeleit-Dahm, K. A. & Cooper, M. E. New insights into the use of biomarkers of diabetic nephropathy. Adv. Chronic Kidney Dis. 21, 318–326 (2014).

    Article  PubMed  Google Scholar 

  238. Fufaa, G. D. et al. Association of urinary KIM-1, L-FABP, NAG and NGAL with incident end-stage renal disease and mortality in American Indians with type 2 diabetes mellitus. Diabetologia 58, 188–198 (2015).

    Article  CAS  PubMed  Google Scholar 

  239. Wong, M. G. et al. Circulating bone morphogenetic protein-7 and transforming growth factor-β1 are better predictors of renal end points in patients with type 2 diabetes mellitus. Kidney Int. 83, 278–284 (2013).

    Article  CAS  PubMed  Google Scholar 

  240. Pugliese, G. et al. Reproducibility of albuminuria in type 2 diabetic subjects. Findings from the Renal Insufficiency And Cardiovascular Events (RIACE) study Nephrol. Dial. Transplant. 26, 3950–3954 (2011).

    Article  CAS  PubMed  Google Scholar 

  241. LeBleu, V. S. et al. Origin and function of myofibroblasts in kidney fibrosis. Nat. Med. 19, 1047–1053 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Introduction (K.A.M.J-.D. and M.C.T.); Epidemiology (P-.H.G. and M.C.T.); Mechanisms/pathophysiology (M.B., K. Sustak and M.C.T.); Diagnosis, screening and prevention (K. Sharma and M.C.T.); Management (P.R., S.Z. and M.C.T.); Quality of Life (M.C.T.); Outlook (M.E.C. and M.C.T.); overview of Primer (M.E.C.).

Corresponding author

Correspondence to Mark E. Cooper.

Ethics declarations

Competing interests

M.C.T. has received honoraria for educational meetings conducted on behalf of AbbVie, Boehringer Ingelheim, Eli Lilly and Company, Merck Sharpe & Dohme, Servier, Novartis, Takeda, Abbott, Allergan and AstraZeneca. M.B. declares no competing interests. K. Susztak has received research support from Boehringer Ingelheim and Biogen Idec for projects not related to this publication, and is on the advisory board of AbbVie. She has received research support from the US National Institutes of Health (NIH), the Juvenile Diabetes Research Foundation (JDRF) and the American Diabetes Association (ADA). K. Sharma has received research support from AbbVie, Boehringer Ingelheim and Stealth Peptides for projects not related to this publication, and is on the scientific advisory board of Merck and Astellas. He is founder of Clinical Metabolomics, and has received research support from the NIH, the JDRF and the ADA. K.A.M.J-.D. has received research grants from Genkyotex and Boehringer Ingelheim. S.Z. has served on the advisory board for Amgen, AstraZeneca, Bristol-Myers Squibb, Merck Sharp & Dohme, Novartis, Sanofi and Takeda Pharmaceuticals. S.Z. has received consultancy fees and honoraria from AstraZeneca, Bristol-Myers Squibb, Janssen-Cilag, Merck Sharp & Dohme and Servier Laboratories. She has received grants from the National Health and Medical Research Council and the Heart Foundation of Australia, and has undertaken institutional contract work for Bristol-Myers Squibb and the Commonwealth Department of Health. P.R. has received consultancy and/or speaking fees (to his institution) from AstraZeneca, Bristol-Myers Squibb, Boehringer Ingelheim, Eli Lilly and Company, Novo Nordisk, Sanofi Aventis, Astellas, AbbVie and Merck Sharp & Dohme. He has received research grants from AbbVie, Novo Nordisk and Astra Zeneca. P.R. has shares in Novo Nordisk. P-.H.G. has received lecture honoraria from Boehringer Ingelheim, AstraZeneca, Genzyme, Novartis, Novo Nordisk, Merck Sharp & Dohme, Eli Lilly and Company and Medscape. M.E.C. has received honoraria and consulting fees from AbbVie, Bayer, Boehringer Ingelheim, Eli Lilly and Company, Merck Sharpe and Dohme, Servier, Takeda, Novo Nordisk and AstraZeneca, as well as research grants from Novo Nordisk and AbbVie.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thomas, M., Brownlee, M., Susztak, K. et al. Diabetic kidney disease. Nat Rev Dis Primers 1, 15018 (2015). https://doi.org/10.1038/nrdp.2015.18

Download citation

  • Published:

  • DOI: https://doi.org/10.1038/nrdp.2015.18

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing