Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Primer
  • Published:

Acute rheumatic fever and rheumatic heart disease

Abstract

Acute rheumatic fever (ARF) is the result of an autoimmune response to pharyngitis caused by infection with group A Streptococcus. The long-term damage to cardiac valves caused by ARF, which can result from a single severe episode or from multiple recurrent episodes of the illness, is known as rheumatic heart disease (RHD) and is a notable cause of morbidity and mortality in resource-poor settings around the world. Although our understanding of disease pathogenesis has advanced in recent years, this has not led to dramatic improvements in diagnostic approaches, which are still reliant on clinical features using the Jones Criteria, or treatment practices. Indeed, penicillin has been the mainstay of treatment for decades and there is no other treatment that has been proven to alter the likelihood or the severity of RHD after an episode of ARF. Recent advances — including the use of echocardiographic diagnosis in those with ARF and in screening for early detection of RHD, progress in developing group A streptococcal vaccines and an increased focus on the lived experience of those with RHD and the need to improve quality of life — give cause for optimism that progress will be made in coming years against this neglected disease that affects populations around the world, but is a particular issue for those living in poverty.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The global burden of RHD.
Figure 2: Generation of a cross-reactive immune response in ARF.
Figure 3: Manifestations of ARF in the joints.
Figure 4: Molecular and cellular basis of Sydenham's chorea.
Figure 5: Skin manifestations of ARF.
Figure 6: The GAS cross-reactive immune response in the heart.
Figure 7: Localization of Sydenham's chorea-derived antibodies and tyrosine hydroxylase in the brains of transgenic mice.
Figure 8: Expression of VCAM1 by the valvular endothelium.
Figure 9: Immunohistochemistry of infiltration of CD4+ T cells into the valve of the left atrium in ARF.
Figure 10: Echocardiogram from child with severe mitral regurgitation.
Figure 11: Echocardiogram from child with severe mitral stenosis.

Similar content being viewed by others

References

  1. Gewitz, M. H. et al. Revision of the Jones Criteria for the diagnosis of acute rheumatic fever in the era of Doppler echocardiography: a scientific statement from the American Heart Association. Circulation 131, 1806–1818 (2015). The 2015 revision of the Jones Criteria provides, for the first time, differing criteria for low and high disease incidence settings.

    Article  PubMed  Google Scholar 

  2. Denny, F. W., Wannamaker, L. W., Brink, W. R., Rammelkamp, C. H. Jr & Custer, E. A. Prevention of rheumatic fever; treatment of the preceding streptococcic infection. J. Am. Med. Assoc. 143, 151–153 (1950).

    Article  CAS  PubMed  Google Scholar 

  3. Stollerman, G. H., Rusoff, J. H. & Hirschfeld, I. Prophylaxis against group A streptococci in rheumatic fever; the use of single monthly injections of benzathine penicillin G. N. Engl. J. Med. 252, 787–792 (1955).

    Article  CAS  PubMed  Google Scholar 

  4. Carapetis, J. R. The stark reality of rheumatic heart disease. Eur. Heart J. 36, 1070–1073 (2015).

    Article  PubMed  Google Scholar 

  5. Quinn, R. W. Comprehensive review of morbidity and mortality trends for rheumatic fever, streptococcal disease, and scarlet fever: the decline of rheumatic fever. Rev. Infect. Dis. 11, 928–953 (1989). This paper describes the first attempt to quantify the global disease burden resulting from ARF. Although the estimates did not incorporate many data from developing countries, this paper set the scene for subsequent disease burden estimates.

    Article  CAS  PubMed  Google Scholar 

  6. Carapetis, J. R., Steer, A. C., Mulholland, E. K. & Weber, M. The global burden of group A streptococcal diseases. Lancet Infect. Dis. 5, 685–694 (2005). This article outlines the most definitive attempt to quantify the global disease burden due to GAS infections, including ARF and RHD. This study proved to be pivotal for advocacy efforts and also highlighted major gaps in data, particularly from developing countries.

    Article  PubMed  Google Scholar 

  7. Murray, C. J. et al. Disability-adjusted life years (DALYs) for 291 diseases and injuries in 21 regions, 1990–2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet 380, 2197–2223 (2012).

    Article  PubMed  Google Scholar 

  8. GBD 2013 Mortality and Causes of Death Collaborators. Global, regional, and national age-sex specific all-cause and cause-specific mortality for 240 causes of death, 1990–2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet 385, 117–171 (2015).

    Article  Google Scholar 

  9. Global Burden of Disease Study 2013 Collaborators. Global, regional, and national incidence, prevalence, and years lived with disability for 301 acute and chronic diseases and injuries in 188 countries, 1990–2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet 386, 743–800 (2015). The GBD study has attempted to update RHD burden estimates, and this is one of many papers from that study. The methodology continues to be refined, so estimates are still not sufficiently robust, but most researchers in the RHD community believe the GBD estimates are moving us closer to understanding the true burden of RHD.

    Article  PubMed Central  Google Scholar 

  10. Lawrence, J. G., Carapetis, J. R., Griffiths, K., Edwards, K. & Condon, J. R. Acute rheumatic fever and rheumatic heart disease: incidence and progression in the Northern Territory of Australia, 1997 to 2010. Circulation 128, 492–501 (2013).

    Article  PubMed  Google Scholar 

  11. Parnaby, M. G. & Carapetis, J. R. Rheumatic fever in indigenous Australian children. J. Paediatr. Child Health 46, 527–533 (2010).

    Article  PubMed  Google Scholar 

  12. Rothenbuhler, M. et al. Active surveillance for rheumatic heart disease in endemic regions: a systematic review and meta-analysis of prevalence among children and adolescents. Lancet Glob. Health 2, e717–e726 (2014).

    Article  PubMed  Google Scholar 

  13. Yacoub Wasef, S. Z. Gender differences in systemic lupus erythematosus. Gend. Med. 1, 12–17 (2004).

    Article  PubMed  Google Scholar 

  14. Diao, M. et al. Pregnancy in women with heart disease in sub-Saharan Africa. Arch. Cardiovasc. Dis. 104, 370–374 (2011).

    Article  PubMed  Google Scholar 

  15. Say, L. et al. Global causes of maternal death: a WHO systematic analysis. Lancet Glob. Health 2, e323–e333 (2014).

    Article  PubMed  Google Scholar 

  16. Soma-Pillay, P., MacDonald, A. P., Mathivha, T. M., Bakker, J. L. & Mackintosh, M. O. Cardiac disease in pregnancy: a 4-year audit at Pretoria Academic Hospital. S. Afr. Med. J. 98, 553–556 (2008).

    CAS  PubMed  Google Scholar 

  17. Sawhney, H. et al. Maternal and perinatal outcome in rheumatic heart disease. Int. J. Gynaecol. Obstetr. 80, 9–14 (2003).

    Article  CAS  Google Scholar 

  18. Steer, A. C., Carapetis, J. R., Nolan, T. M. & Shann, F. Systematic review of rheumatic heart disease prevalence in children in developing countries: the role of environmental factors. J. Paediatr. Child Health 38, 229–234 (2002).

    Article  CAS  PubMed  Google Scholar 

  19. Brown, A., McDonald, M. I. & Calma, T. Rheumatic fever and social justice. Med. J. Aust. 186, 557–558 (2007).

    PubMed  Google Scholar 

  20. Riaz, B. K. et al. Risk factors of rheumatic heart disease in Bangladesh: a case–control study. J. Health Popul. Nutr. 31, 70–77 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Quinn, R. W. Epidemiology of group A streptococcal infections — their changing frequency and severity. Yale J. Biol. Med. 55, 265–270 (1982).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Jaine, R., Baker, M. & Venugopal, K. Acute rheumatic fever associated with household crowding in a developed country. Pediatr. Infect. Dis. J. 30, 315–319 (2011).

    Article  PubMed  Google Scholar 

  23. Okello, E. et al. Socioeconomic and environmental risk factors among rheumatic heart disease patients in Uganda. PLoS ONE 7, e43917 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Carapetis, J. R. & Currie, B. J. Rheumatic fever in a high incidence population: the importance of monoarthritis and low grade fever. Arch. Dis. Child 85, 223–227 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Gordis, L. Effectiveness of comprehensive-care programs in preventing rheumatic fever. N. Engl. J. Med. 289, 331–335 (1973).

    Article  CAS  PubMed  Google Scholar 

  26. Bach, J. F. et al. 10-year educational programme aimed at rheumatic fever in two French Caribbean islands. Lancet 347, 644–648 (1996).

    Article  CAS  PubMed  Google Scholar 

  27. Nordet, P., Lopez, R., Duenas, A. & Sarmiento, L. Prevention and control of rheumatic fever and rheumatic heart disease: the Cuban experience. Cardiovasc. J. Afr. 19, 135–140 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Omurzakova, N. A. et al. High incidence of rheumatic fever and rheumatic heart disease in the republics of Central Asia. Int. J. Rheum. Dis. 12, 79–83 (2009).

    Article  PubMed  Google Scholar 

  29. Ben-Pazi, H., Stoner, J. A. & Cunningham, M. W. Dopamine receptor autoantibodies correlate with symptoms in Sydenham's chorea. PLoS ONE 8, e73516 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Brimberg, L. et al. Behavioral, pharmacological, and immunological abnormalities after streptococcal exposure: a novel rat model of Sydenham chorea and related neuropsychiatric disorders. Neuropsychopharmacology 37, 2076–2087 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Cox, C. J. et al. Brain human monoclonal autoantibody from sydenham chorea targets dopaminergic neurons in transgenic mice and signals dopamine D2 receptor: implications in human disease. J. Immunol. 191, 5524–5541 (2013).

    Article  CAS  PubMed  Google Scholar 

  32. Cunningham, M. W. Rheumatic fever, autoimmunity, and molecular mimicry: the streptococcal connection. Int. Rev. Immunol. 33, 314–329 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ellis, N. M. J., Li, Y., Hildebrand, W., Fischetti, V. A. & Cunningham, M. W. T cell mimicry and epitope specificity of crossreactive T cell clones from rheumatic heart disease. J. Immunol. 175, 5448–5456 (2005).

    Article  CAS  PubMed  Google Scholar 

  34. Fae, K. C. et al. Mimicry in recognition of cardiac myosin peptides by heart-intralesional T cell clones from rheumatic heart disease. J. Immunol. 176, 5662–5670 (2006). References 33 and 34 outline the investigation of cross-reactive T cell clones from the blood and heart of patients with rheumatic carditis and describe the identification of T cell clone cross-reactivity with human cardiac myosin and the group A streptococcal M protein.

    Article  CAS  PubMed  Google Scholar 

  35. Galvin, J. E., Hemric, M. E., Ward, K. & Cunningham, M. W. Cytotoxic monoclonal antibody from rheumatic carditis reacts with human endothelium: implications in rheumatic heart disease. J. Clin. Invest. 106, 217–224 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Husby, G., van de Rijn, I., Zabriskie, J. B., Abdin, Z. H. & Williams, R. C. Antibodies reacting with cytoplasm of subthalamic and caudate nuclei neurons in chorea and acute rheumatic fever. J. Exp. Med. 144, 1094–1110 (1976).

    Article  CAS  PubMed  Google Scholar 

  37. Kirvan, C. A., Cox, C. J., Swedo, S. E. & Cunningham, M. W. Tubulin is a neuronal target of autoantibodies in Sydenham's chorea. J. Immunol. 178, 7412–7421 (2007).

    Article  CAS  PubMed  Google Scholar 

  38. Kirvan, C. A., Swedo, S. E., Heuser, J. S. & Cunningham, M. W. Mimicry and autoantibody-mediated neuronal cell signaling in Sydenham chorea. Nat. Med. 9, 914–920 (2003). This study of human mAbs derived from Sydenham's chorea showed that antibodies in chorea were cross-reactive with the group A carbohydrate antigen N-acetyl-β-D-glucosamine and brain antigens such as lysoganglioside and could alter signalling activity in human neuronal cell cultures. Together these data provided strong evidence for a role for cross-reactivity between group A streptococci and brain tissues and molecular mimicry in this manifestation of ARF.

    Article  CAS  PubMed  Google Scholar 

  39. Kirvan, C. A., Swedo, S. E., Kurahara, D. & Cunningham, M. W. Streptococcal mimicry and antibody-mediated cell signaling in the pathogenesis of Sydenham's chorea. Autoimmunity 39, 21–29 (2006).

    Article  CAS  PubMed  Google Scholar 

  40. Krisher, K. & Cunningham, M. W. Myosin: a link between streptococci and heart. Science 227, 413–415 (1985). Using mAbs from mice immunized with group A streptococcal wall-membrane antigens, this study found that antibodies against the group A streptococci reacted with both heart and streptococcal antigens and that the target heart antigen was myosin. This study thus showed for the first time the roles of cross-reactivity and molecular mimicry in ARF.

    Article  CAS  PubMed  Google Scholar 

  41. Lehmann, P. V., Forsthuber, T., Miller, A. & Sercarz, E. E. Spreading of T-cell autoimmunity to cryptic determinants of an autoantigen. Nature 358, 155–157 (1992).

    Article  CAS  PubMed  Google Scholar 

  42. Shikhman, A. R. & Cunningham, M. W. Immunological mimicry between N-acetyl-beta-D-glucosamine and cytokeratin peptides. Evidence for a microbially driven anti-keratin antibody response. J. Immunol. 152, 4375–4387 (1994).

    CAS  PubMed  Google Scholar 

  43. Swerlick, R. A., Cunningham, M. W. & Hall, N. K. Monoclonal antibodies cross-reactive with group A streptococci and normal and psoriatic human skin. J. Invest. Dermatol. 87, 367–371 (1986).

    Article  CAS  PubMed  Google Scholar 

  44. Stollerman, G. H. Rheumatic fever in the 21st century. Clin. Infect. Dis. 33, 806–814 (2001).

    Article  CAS  PubMed  Google Scholar 

  45. Veasy, L. G. et al. Temporal association of the appearance of mucoid strains of Streptococcus pyogenes with a continuing high incidence of rheumatic fever in Utah. Pediatrics 113, 168–172 (2004).

    Article  Google Scholar 

  46. McDonald, M., Currie, B. J. & Carapetis, J. R. Acute rheumatic fever: a chink in the chain that links the heart to the throat? Lancet Infect. Dis. 4, 240–245 (2004).

    Article  PubMed  Google Scholar 

  47. Bessen, D. E. et al. Contrasting molecular epidemiology of group A streptococci causing tropical and nontropical infections of the skin and throat. J. Infect. Dis. 182, 1109–1116 (2000).

    Article  CAS  PubMed  Google Scholar 

  48. Erdem, G. et al. Group A streptococcal isolates temporally associated with acute rheumatic fever in Hawaii: differences from the continental United States. Clin. Infect. Dis. 45, e20–e24 (2007).

    Article  PubMed  Google Scholar 

  49. Smeesters, P. R. et al. Differences between Belgian and Brazilian group A Streptococcus epidemiologic landscape. PLoS ONE 1, e10 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Steer, A. C. et al. Acute rheumatic fever and rheumatic heart disease in Fiji: prospective surveillance, 2005–2007. Med. J. Aust. 190, 133–135 (2009).

    PubMed  Google Scholar 

  51. Potter, E. V. et al. Relationship of acute rheumatic fever to acute glomerulonephritis in Trinidad. J. Infect. Dis. 125, 619–625 (1972).

    Article  CAS  PubMed  Google Scholar 

  52. Zuhlke, L. et al. Characteristics, complications, and gaps in evidence-based interventions in rheumatic heart disease: the Global Rheumatic Heart Disease Registry (the REMEDY study). Eur. Heart J. 36, 1115–1122 (2015).

    Article  PubMed  Google Scholar 

  53. Towers, R. J. et al. Extensive diversity of Streptococcus pyogenes in a remote human population reflects global-scale transmission rather than localised diversification. PLoS ONE 8, e73851 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Bryant, P. A., Robins-Browne, R., Carapetis, J. R. & Curtis, N. Some of the people, some of the time. Susceptibility to acute rheumatic fever. Circulation 119, 742–753 (2009).

    Article  PubMed  Google Scholar 

  55. Messias Reason, I. J., Schafranski, M. D., Jensenius, J. C. & Steffensen, R. The association between mannose-binding lectin gene polymorphism and rheumatic heart disease. Hum. Immunol. 67, 991–998 (2006).

    Article  CAS  PubMed  Google Scholar 

  56. Ramasawmy, R. et al. Association of mannose-binding lectin gene polymorphism but not of mannose-binding serine protease 2 with chronic severe aortic regurgitation of rheumatic etiology. Clin. Vaccine Immunol. 15, 932–936 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Messias-Reason, I. J., Schafranski, M. D., Kremsner, P. G. & Kun, J. F. Ficolin 2 (FCN2) functional polymorphisms and the risk of rheumatic fever and rheumatic heart disease. Clin. Exp. Immunol. 157, 395–399 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Berdeli, A., Celik, H. A., Ozyürek, R., Dogrusoz, B. & Aydin, H. H. TLR-2 gene Arg753Gln polymorphism is strongly associated with acute rheumatic fever in children. J. Mol. Med. (Berl.) 83, 535–541 (2005).

    Article  CAS  Google Scholar 

  59. Yee, A. M., Phan, H. M., Zuniga, R., Salmon, J. E. & Musher, D. M. Association between FcγRIIa-R131 allotype and bacteremic pneumococcal pneumonia. Clin. Infect. Dis. 30, 25–28 (2000).

    Article  CAS  PubMed  Google Scholar 

  60. Settin, A., Abdel-Hady, H., El-Baz, R. & Saber, I. Gene polymorphisms of TNF−308, IL-10−1082, IL-6−174, and IL-1RaVNTR related to susceptibility and severity of rheumatic heart disease. Pediatr. Cardiol. 28, 363–371 (2007).

    Article  CAS  PubMed  Google Scholar 

  61. Azevedo, P. M. et al. Interleukin-1 receptor antagonist gene (IL1RN) polymorphism possibly associated to severity of rheumatic carditis in a Brazilian cohort. Cytokine 49, 109–113 (2010).

    Article  CAS  PubMed  Google Scholar 

  62. Hernández-Pacheco, G. et al. Tumor necrosis factor-α promoter polymorphisms in Mexican patients with rheumatic heart disease. J. Autoimmun. 21, 59–63 (2003).

    Article  CAS  PubMed  Google Scholar 

  63. Ramasawmy, R. et al. Association of polymorphisms within the promoter region of the tumor necrosis factor-α with clinical outcomes of rheumatic fever. Mol. Immunol. 44, 1873–1878 (2007).

    Article  CAS  PubMed  Google Scholar 

  64. Sallakci, N. et al. TNFα G-308A polymorphism is associated with rheumatic fever and correlates with increased TNFα production. J. Autoimmun. 25, 150–154 (2005).

    Article  CAS  PubMed  Google Scholar 

  65. Kamal, H. et al. Transforming growth factor-β1 gene C-509T and T869C polymorphisms as possible risk factors in rheumatic heart disease in Egypt. Acta Cardiol. 65, 177–183 (2010).

    Article  PubMed  Google Scholar 

  66. Chou, H. T., Chen, C. H., Tsai, C. H. & Tsai, F. J. Association between transforming growth factor-β1 gene C-509T and T869C polymorphisms and rheumatic heart disease. Am. Heart J. 148, 181–186 (2004).

    Article  CAS  PubMed  Google Scholar 

  67. Düzgün, N., Duman, T., Haydardedeog˘lu, F. E. & Tutkak, H. Cytotoxic T lymphocyte-associated antigen-4 polymorphism in patients with rheumatic heart disease. Tissue Antigens 74, 539–542 (2009).

    Article  CAS  PubMed  Google Scholar 

  68. Maharaj, B., Hammond, M. G., Appadoo, B., Leary, W. P. & Pudifin, D. J. HLA-A, B, DR, and DQ antigens in black patients with severe chronic rheumatic heart disease. Circulation 76, 259–261 (1987).

    Article  CAS  PubMed  Google Scholar 

  69. Monplaisir, N., Valette, I. & Bach, J. F. HLA antigens in 88 cases of rheumatic fever observed in Martinique. Tissue Antigens 28, 209–213 (1986).

    Article  CAS  PubMed  Google Scholar 

  70. Donadi, E. A., Smith, A. G., Louzada-Júnior, P., Voltarelli, J. C. & Nepom, G. T. HLA class I and class II profiles of patients presenting with Sydenham's chorea. J. Neurol. 247, 122–128 (2000).

    CAS  PubMed  Google Scholar 

  71. Ayoub, E. M., Barrett, D. J., Maclaren, N. K. & Krischer, J. P. Association of class II human histocompatibility leukocyte antigens with rheumatic fever. J. Clin. Invest. 77, 2019–2026 (1986).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Hernández-Pacheco, G. et al. MHC class II alleles in Mexican patients with rheumatic heart disease. Int. J. Cardiol. 92, 49–54 (2003).

    Article  PubMed  Google Scholar 

  73. Jhinghan, B. et al. HLA, blood groups and secretor status in patients with established rheumatic fever and rheumatic heart disease. Tissue Antigens 27, 172–178 (1986).

    Article  CAS  PubMed  Google Scholar 

  74. Ozkan, M. et al. HLA antigens in Turkish race with rheumatic heart disease. Circulation 87, 1974–1978 (1993).

    Article  CAS  PubMed  Google Scholar 

  75. Anastasiou-Nana, M. I., Anderson, J. L., Carlquist, J. F. & Nanas, J. N. HLA-DR typing and lymphocyte subset evaluation in rheumatic heart disease: a search for immune response factors. Am. Heart J. 112, 992–997 (1986).

    Article  CAS  PubMed  Google Scholar 

  76. Rajapakse, C. N., Halim, K., Al-Orainey, I., Al-Nozha, M. & Al-Aska, A. K. A genetic marker for rheumatic heart disease. Br. Heart J. 58, 659–662 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Guilherme, L., Weidenbach, W., Kiss, M. H., Snitcowdky, R. & Kalil, J. Association of human leukocyte class II antigens with rheumatic fever or rheumatic heart disease in a Brazilian population. Circulation 83, 1995–1998 (1991).

    Article  CAS  PubMed  Google Scholar 

  78. Visentainer, J. E. et al. Association of HLA-DR7 with rheumatic fever in the Brazilian population. J. Rheumatol. 27, 1518–1520 (2000).

    CAS  PubMed  Google Scholar 

  79. Guédez, Y. et al. HLA class II associations with rheumatic heart disease are more evident and consistent among clinically homogeneous patients. Circulation 99, 2784–2790 (1999).

    Article  PubMed  Google Scholar 

  80. Stanevicha, V. et al. HLA class II associations with rheumatic heart disease among clinically homogeneous patients in children in Latvia. Arthritis Res. Ther. 5, R340–R346 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Olmez, U. et al. Association of HLA class I and class II antigens with rheumatic fever in a Turkish population. Scand. J. Rheumatol. 22, 49–52 (1993).

    Article  CAS  PubMed  Google Scholar 

  82. Guilherme, L., Kö hler, K. F. & Kalil, J. Rheumatic heart disease: mediation by complex immune events. Adv. Clin. Chem. 53, 31–50 (2011).

    Article  CAS  PubMed  Google Scholar 

  83. Yoshinoya, S. & Pope, R. M. Detectioin of immune complexes in acute rheumatic fever and their relationship to HLA-B5. J. Clin. Invest. 65, 136–145 (1980).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Kaplan, M. H., Bolande, R., Ratika, L. & Blair, J. Presence of bound immunoglobulins and complement in the myocardium in acute rheumatic fever. N. Engl. J. Med. 271, 637 (1964).

    Article  CAS  PubMed  Google Scholar 

  85. Roberts, S. et al. Pathogenic mechanisms in rheumatic carditis: focus on valvular endothelium. J. Infect. Dis. 183, 507–511 (2001).

    Article  CAS  PubMed  Google Scholar 

  86. Greenfield, J. G. & Wolfson, J. M. The pathology of Sydenham's chorea. Lancet 2, 603–606 (1922).

    Article  Google Scholar 

  87. Quinn, A., Kosanke, S., Fischetti, V. A., Factor, S. M. & Cunningham, M. W. Induction of autoimmune valvular heart disease by recombinant streptococcal M protein. Infect. Immun. 69, 4072–4078 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Taranta, A. & Stollerman, G. H. The relationship of Sydenham's chorea to infection with group A streptococci. Am. J. Med. 20, 170–175 (1956).

    Article  CAS  PubMed  Google Scholar 

  89. Meador-Woodruff, J. H. et al. Comparison of the distributions of D1 and D2 dopamine receptor mRNAs in rat brain. Neuropsychopharmacology 5, 231–242 (1991).

    CAS  PubMed  Google Scholar 

  90. Lotan, D. et al. Behavioral and neural effects of intra-striatal infusion of anti-streptococcal antibodies in rats. Brain Behav. Immun. 38, 249–262 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Hoffman, K. L., Hornig, M., Yaddanapudi, K., Jabado, O. & Lipkin, W. I. A murine model for neuropsychiatric disorders associated with group A β-hemolytic streptococcal infection. J. Neurosci. 24, 1780–1791 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Perlmutter, S. J. et al. Therapeutic plasma exchange and intravenous immunoglobulin for obsessive–compulsive disorder and tic disorders in childhood. Lancet 354, 1153–1158 (1999).

    Article  CAS  PubMed  Google Scholar 

  93. Garvey, M. A., Snider, L. A., Leitman, S. F., Werden, R. & Swedo, S. E. Treatment of Sydenham's chorea with intravenous immunoglobulin, plasma exchange, or prednisone. J. Child Neurol. 20, 424–429 (2005).

    Article  PubMed  Google Scholar 

  94. Barash, J., Margalith, D. & Matitiau, A. Corticosteroid treatment in patients with Sydenham's chorea. Pediatr. Neurol. 32, 205–207 (2005).

    Article  PubMed  Google Scholar 

  95. Cardoso, F., Maia, D., Cunningham, M. C. & Valenca, G. Treatment of Sydenham chorea with corticosteroids. Mov. Disord. 18, 1374–1377 (2003).

    Article  PubMed  Google Scholar 

  96. Fusco, C., Ucchino, V., Frattini, D., Pisani, F. & Della Giustina, E. Acute and chronic corticosteroid treatment of ten patients with paralytic form of Sydenham's chorea. Eur. J. Paediatr. Neurol. 16, 373–378 (2012).

    Article  PubMed  Google Scholar 

  97. Paz, J. A., Silva, C. A. & Marques-Dias, M. J. Randomized double-blind study with prednisone in Sydenham's chorea. Pediatr. Neurol. 34, 264–269 (2006).

    Article  PubMed  Google Scholar 

  98. Walker, A. R. et al. Rheumatic chorea: relationship to systemic manifestations and response to corticosteroids. J. Pediatr. 151, 679–683 (2007).

    Article  CAS  PubMed  Google Scholar 

  99. Yaddanapudi, K. et al. Passive transfer of streptococcus-induced antibodies reproduces behavioral disturbances in a mouse model of pediatric autoimmune neuropsychiatric disorders associated with streptococcal infection. Mol. Psychiatry 15, 712–726 (2009).

    Article  CAS  PubMed  Google Scholar 

  100. Lotan, D., Cunningham, M. & Joel, D. Antibiotic treatment attenuates behavioral and neurochemical changes induced by exposure of rats to group a streptococcal antigen. PLoS ONE 9, e101257 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Cunningham, M. W. Pathogenesis of group A streptococcal infections. Clin. Microbiol. Rev. 13, 470–511 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Zabriskie, J. B. Mimetic relationships between group A streptococci and mammalian tissues. Adv. Immunol. 7, 147–188 (1967).

    Article  CAS  PubMed  Google Scholar 

  103. Zabriskie, J. B. & Freimer, E. H. An immunological relationship between the group A streptococcus and mammalian muscle. J. Exp. Med. 124, 661–678 (1966).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Zabriskie, J. B., Hsu, K. C. & Seegal, B. C. Heart-reactive antibody associated with rheumatic fever: characterization and diagnostic significance. Clin. Exp. Immunol. 7, 147–159 (1970).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Cunningham, M. W. Streptococcus and rheumatic fever. Curr. Opin. Rheumatol 24, 408–416 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Goldstein, I., Halpern, B. & Robert, L. Immunological relationship between streptococcus A polysaccharide and the structural glycoproteins of heart valve. Nature 213, 44–47 (1967).

    Article  CAS  Google Scholar 

  107. Dudding, B. A. & Ayoub, E. M. Persistence of streptococcal group A antibody in patients with rheumatic valvular disease. J. Exp. Med. 128, 1081–1098 (1968).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. McNamara, C. et al. Coiled-coil irregularities and instabilities in group A streptococcus M1 are required for virulence. Science 319, 1405–1408 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Ellis, N. M. J. et al. Priming the immune system for heart disease: a perspective on group A streptococci. J. Infect. Dis. 202, 1059–1067 (2010).

    Article  CAS  PubMed  Google Scholar 

  110. Gorton, D. E. et al. Cardiac myosin epitopes for monitoring progression of rheumatic fever. Pediatr. Infect. Dis. J. 30, 1015–1016 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  111. Cunningham, M. W., Antone, S. M., Smart, M., Liu, R. & Kosanke, S. Molecular analysis of human cardiac myosin-cross-reactive B- and T-cell epitopes of the group A streptococcal M5 protein. Infect. Immun. 65, 3913–3923 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Cunningham, M. W. et al. Human and murine antibodies cross-reactive with streptococcal M protein and myosin recognize the sequence GLN-LYS-SER-LYS-GLN in M protein. J. Immunol. 143, 2677–2683 (1989).

    CAS  PubMed  Google Scholar 

  113. Faé, K. C. et al. CXCL9/MIG mediates T cells recruitment to valvular tissue lesions of chronic rheumatic heart disease patients. Inflammation 36, 800–811 (2013).

    Article  CAS  PubMed  Google Scholar 

  114. Dale, J. B., Penfound, T. A., Chiang, E. Y. & Walton, W. J. New 30-valent M protein-based vaccine evokes cross-opsonic antibodies against non-vaccine serotypes of group A streptococci. Vaccine 29, 8175–8178 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Martins, T. B. et al. Comprehensive analysis of antibody responses to streptococcal and tissue antigens in patients with acute rheumatic fever. Int. Immunol. 20, 445–452 (2008).

    Article  CAS  PubMed  Google Scholar 

  116. Tandon, R. et al. Revisiting the pathogenesis of rheumatic fever and carditis. Nat. Rev. Cardiol. 10, 171–177 (2013).

    Article  CAS  PubMed  Google Scholar 

  117. Dinkla, K. et al. Streptococcus pyogenes recruits collagen via surface-bound fibronectin: a novel colonization and immune evasion mechanism. Mol. Microbiol. 47, 861–869 (2003).

    Article  CAS  PubMed  Google Scholar 

  118. Lukomski, S. et al. Identification and characterization of the scl gene encoding a group A Streptococcus extracellular protein virulence factor with similarity to human collagen. Infect. Immun. 68, 6542–6553 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Lukomski, S. et al. Identification and characterization of a second extracellular collagen-like protein made by group A Streptococcus: control of production at the level of translation. Infect. Immun. 69, 1729–1738 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Galvin, J. E. et al. Induction of myocarditis and valvulitis in Lewis rats by different epitopes of cardiac myosin and its implications in rheumatic carditis. Am. J. Pathol. 160, 297–306 (2002). This study of mAbs from human rheumatic carditis explain the mimicry between group A streptococcal antigens and the heart valves and myocardium. Specific cross-reactive antigens included the group A carbohydrate and α-helical proteins such as cardiac myosin in the myocardium and laminin in the endocardium of the valve.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Chopra, P., Narula, J., Kumar, A. S., Sachdeva, S. & Bhatia, M. L. Immunohistochemical characterisation of Aschoff nodules and endomyocardial inflammatory infiltrates in left atrial appendages from patients with chronic rheumatic heart disease. Int. J. Cardiol. 20, 99–105 (1988).

    Article  CAS  PubMed  Google Scholar 

  122. Chopra, P. & Narula, J. P. Scanning electron microscope features of rheumatic vegetations in acute rheumatic carditis. Int. J. Cardiol. 30, 109–112 (1991).

    Article  CAS  PubMed  Google Scholar 

  123. Roberts, S. et al. Immune mechanisms in rheumatic carditis: focus on valvular endothelium. J. Infect. Dis. 183, 507–511 (2001).

    Article  CAS  PubMed  Google Scholar 

  124. Aschoff, L. Myocarditisfrage. Verh. Dtsch. Path. Ges. 8, 46–53 (1906).

    Google Scholar 

  125. Martins, C. de O. et al. Distinct mitral valve proteomic profiles in rheumatic heart disease and myxomatous degeneration. Clin. Med. Insights Cardiol. 8, 79–86 (2014).

    PubMed Central  Google Scholar 

  126. Guilherme, L. et al. Molecular evidence for antigen-driven immune responses in cardiac lesions of rheumatic heart disease patients. Int. Immunol. 12, 1063–1074 (2000).

    Article  CAS  PubMed  Google Scholar 

  127. Guilherme, L. et al. Rheumatic heart disease: proinflammatory cytokines play a role in the progression and maintenance of valvular lesions. Am. J. Pathol. 165, 1583–1591 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Dileepan, T. et al. Robust antigen specific Th17 T cell response to group A Streptococcus is dependent on IL-6 and intranasal route of infection. PLoS Pathog. 7, e1002252 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Pepper, M. et al. Different routes of bacterial infection induce long-lived TH1 memory cells and short-lived TH17 cells. Nat. Immunol. 11, 83–89 (2010).

    Article  CAS  PubMed  Google Scholar 

  130. Wang, B. et al. Induction of TGFβ1 and TGFβ1-dependent predominant TH17 differentiation by group A streptococcal infection. Proc. Natl Acad. Sci. USA 107, 5937–5942 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  131. Bas, H. D. et al. A shift in the balance of regulatory T and T helper 17 cells in rheumatic heart disease. J. Invest. Med. 62, 78–83 (2014).

    Article  CAS  Google Scholar 

  132. Weaver, C. T., Hatton, R. D., Mangan, P. R. & Harrington, L. E. IL-17 family cytokines and the expanding diversity of effector T cell lineages. Annu. Rev. Immunol. 25, 821–852 (2007).

    Article  CAS  PubMed  Google Scholar 

  133. Peck, A. & Mellins, E. D. Precarious balance: TH17 cells in host defense. Infect. Immun. 78, 32–38 (2010).

    Article  CAS  PubMed  Google Scholar 

  134. Guilherme, L. et al. Human heart-infiltrating T-cell clones from rheumatic heart disease patients recognize both streptococcal and cardiac proteins. Circulation 92, 415–420 (1995).

    Article  CAS  PubMed  Google Scholar 

  135. Kirvan, C. A., Galvin, J. E., Hilt, S., Kosanke, S. & Cunningham, M. W. Identification of streptococcal M-protein cardiopathogenic epitopes in experimental autoimmune valvulitis. J. Cardiovasc. Transl Res. 7, 172–181 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  136. Veasy, L. G. & Tani, L. Y. A new look at acute rheumatic mitral regurgitation. Cardiol. Young 15, 568–577 (2005).

    Article  PubMed  Google Scholar 

  137. Jones, T. D. The diagnosis of rheumatic fever. J. Am. Med. Assoc. 126, 481–484 (1944).

    Article  Google Scholar 

  138. [No authors listed.] Jones Criteria (revised) for guidance in the diagnosis of rheumatic fever. Circulation 69, 204A–208A (1984).

  139. [No authors listed.] Guidelines for the diagnosis of rheumatic fever. Jones Criteria, 1992 update. Special Writing Group of the Committee on Rheumatic Fever, Endocarditis, and Kawasaki Disease of the Council on Cardiovascular Disease in the Young of the American Heart Association. JAMA 268, 2069–2073 (1992).

  140. [No authors listed.] Jones criteria (modified) for guidance in the diagnosis of rheumatic fever; report of the Committee on Standards and Criteria for programs of care. Circulation 13, 617–620 (1956).

  141. [No authors listed.] Jones Criteria (revised) for guidance in the diagnosis of rheumatic fever. Circulation 32, 664–668 (1965).

  142. Australia (ARF/RHD Writing Group), National Heart Foundation of Australia & Cardiac Society of Australia and New Zealand. Australian Guideline for Prevention, Diagnosis and Management of Acute Rheumatic Fever and Rheumatic Heart Disease 2nd edn (Menzies School of Health Research, 2012).

  143. Veasy, L. G., Tani, L. Y. & Hill, H. R. Persistence of acute rheumatic fever in the intermountain area of the United States. J. Pediatr. 124, 9–16 (1994).

    Article  CAS  PubMed  Google Scholar 

  144. Veasy, L. G. et al. Resurgence of acute rheumatic fever in the intermountain area of the United States. N. Engl. J. Med. 316, 421–427 (1987).

    Article  CAS  PubMed  Google Scholar 

  145. Vijayalakshmi, I., Vishnuprabhu, R. O. & Chitra, N. The efficacy of echocardiographic criterions for the diagnosis of carditis in acute rheumatic fever. Cardiol. Young 18, 586–592 (2008).

    Article  PubMed  Google Scholar 

  146. Narula, J. & Kaplan, E. L. Echocardiographic diagnosis of rheumatic fever. Lancet 358, 2000 (2001).

    Article  CAS  PubMed  Google Scholar 

  147. Abernethy, M. et al. Doppler echocardiography and the early diagnosis of carditis in acute rheumatic fever. Aust. N. Z. J. Med. 24, 530–535 (1994).

    Article  CAS  PubMed  Google Scholar 

  148. Figueroa, F. E. et al. Prospective comparison of clinical and echocardiographic diagnosis of rheumatic carditis: long term follow up of patients with subclinical disease. Heart 85, 407–410 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Minich, L., Tani, L. Y. & Pagotto, L. T. Doppler echocardiography distinguishes between physiologic and pathologic ‘silent' mitral regurgitation in patients with rheumatic fever. Clin. Cardiol. 20, 924–926 (1997).

    Article  CAS  PubMed  Google Scholar 

  150. Padmavati, S. & Gupta, V. Reappraisal of the Jones criteria: the Indian experience. N. Z. Med. J. 101, 391–392 (1988).

    CAS  PubMed  Google Scholar 

  151. Pereira, B. A. F. et al. Jones Criteria and underdiagnosis of rheumatic fever. Indian J. Pediatr. 74, 117–121 (2007).

    Article  PubMed  Google Scholar 

  152. National Heart Foundation of New Zealand & the Cardiac Society of Australia and New Zealand. Evidence-based, best practice New Zealand Guidelines for Rheumatic Fever 1. Diagnosis, Management and Secondary Prevention (National Heart Foundation of New Zealand, 2006).

  153. National Heart Foundation of Australia (RF/RHD Guideline Development Working Group) & the Cardiac Society of Australia and New Zealand. Diagnosis and Management of Acute Rheumatic Fever and Rheumatic Heart Disease in Australia — an Evidence-Based Review (National Heart Foundation of New Zealand, 2006).

  154. Okello, E. et al. Cardiovascular complications in newly diagnosed rheumatic heart disease patients at Mulago Hospital, Uganda. Cardiovasc. J. Afr. 24, 80–85 (2013).

    Article  PubMed  Google Scholar 

  155. Singh, P. I., Carapetis, J. R., Buadromo, E. M., Samberkar, P. N. & Steer, A. C. The high burden of rheumatic heart disease found on autopsy in Fiji. Cardiol. Young 18, 62–69 (2008).

    Article  PubMed  Google Scholar 

  156. Gordis, L., Lilienfeld, A. & Rodriguez, R. Studies in the epidemiology and preventability of rheumatic fever. I. Demographic factors and the incidence of acute attacks. J. Chronic Dis. 21, 645–654 (1969).

    Article  CAS  PubMed  Google Scholar 

  157. Glover, J. A. Milroy lectures on the incidence of rheumatic diseases. Lancet 215, 499–505 (1930).

    Article  Google Scholar 

  158. Salmond, C., Crampton, P. & Atkinson, J. NZDep2006 Index of Deprivation (Department of Public Health, 2007).

    Google Scholar 

  159. Kerdemelidis, M., Lennon, D. R., Arroll, B., Peat, B. & Jarman, J. The primary prevention of rheumatic fever. J. Paediatr. Child Health 46, 534–548 (2010).

    Article  PubMed  Google Scholar 

  160. Irlam, J., Mayosi, B. M., Engel, M. & Gaziano, T. A. Primary prevention of acute rheumatic fever and rheumatic heart disease with penicillin in South African children with pharyngitis: a cost-effectiveness analysis. Circul. Cardiovasc. Qual. Outcomes 6, 343–351 (2013).

    Article  Google Scholar 

  161. Lennon, D., Stewart, J., Farrell, E., Palmer, A. & Mason, H. School-based prevention of acute rheumatic fever: a group randomized trial in New Zealand. Pediatr. Infect. Dis. J. 28, 787–794 (2009).

    Article  PubMed  Google Scholar 

  162. LeMarechal, F., Martnot, A., Duhamel, A., Pruvost, I. & Dubos, F. Streptococcal pharyngitis in children: a meta-analysis of clinical decision rules and their clinical variables. BMJ Open 3, e001482 (2013).

    Article  Google Scholar 

  163. Catanzaro, F. J., Rammelkamp, C. H. Jr & Chamovitz, R. Prevention of rheumatic fever by treatment of streptococcal infections. N. Engl. J. Med. 259, 53–57 (1958).

    Article  CAS  PubMed  Google Scholar 

  164. Bass, J. W., Crast, F. W., Knowles, C. R. & Onufer, C. N. Streptococcal pharyngitis in children. A comparison of four treatment schedules with intramuscular penicillin G benzathine. JAMA 235, 1112–1116 (1976).

    Article  CAS  PubMed  Google Scholar 

  165. Lennon, D. R., Farrell, E., Martin, D. R. & Stewart, J. M. Once-daily amoxicillin versus twice-daily penicillin V in group A β-haemolytic streptococcal pharyngitis. Arch. Dis. Child 93, 474–478 (2008).

    Article  CAS  PubMed  Google Scholar 

  166. Clegg, H. W. et al. Treatment of streptococcal pharyngitis with once-daily compared with twice-daily amoxicillin: a noninferiority trial. Pediatr. Infect. Dis. J. 25, 761–767 (2006).

    Article  PubMed  Google Scholar 

  167. Parks, T., Smeesters, P. R. & Steer, A. C. Streptococcal skin infection and rheumatic heart disease. Curr. Opin. Infect. Dis. 25, 145–153 (2012).

    Article  PubMed  Google Scholar 

  168. Martin, D. R., Voss, L. M., Walker, S. J. & Lennon, D. Acute rheumatic fever in Auckland, New Zealand: spectrum of associated group A streptococci different from expected. Pediatr. Infect. Dis. J. 13, 264–269 (1994).

    Article  CAS  PubMed  Google Scholar 

  169. Williamson, D. A. et al. M-protein analysis of Streptococcus pyogenes isolates associated with acute rheumatic fever in New Zealand. J. Clin. Microbiol. 53, 3618–3620 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Manyemba, J. & Mayosi, B. M. Penicillin for secondary prevention of rheumatic fever. Cochrane Database Syst Rev. 3, CD002227 (2002).

    Google Scholar 

  171. Tompkins, D. G., Boxerbaum, B. & Liebman, J. Long-term prognosis of rheumatic fever patients receiving regular intramuscular benzathine penicillin. Circulation 45, 543–551 (1972).

    Article  CAS  PubMed  Google Scholar 

  172. Taranta, A. Factors influencing recurrent rheumatic fever. Annu. Rev. Med. 18, 159–172 (1967).

    Article  CAS  PubMed  Google Scholar 

  173. Bland, E. F. & Duckett Jones, T. Rheumatic fever and rheumatic heart disease; a twenty year report on 1000 patients followed since childhood. Circulation 4, 836–843 (1951).

    Article  CAS  PubMed  Google Scholar 

  174. Ash, R. Rheumatic infection in childhood; 15 to 20 year follow-up. Am. J. Dis. Child 76, 46–52 (1948).

    Article  CAS  Google Scholar 

  175. Wilson, M. G. & Lubschez, R. Longevity in rheumatic fever; based on the experience of 1,042 children observed over a period of 30 years. J. Am. Med. Assoc. 138, 794–798 (1948).

    Article  CAS  PubMed  Google Scholar 

  176. Lue, H. C., Wu, M. H., Wang, J. K., Wu, F. F. & Wu, Y. N. Long-term outcome of patients with rheumatic fever receiving benzathine penicillin G prophylaxis every three weeks versus every four weeks. J. Pediatr. 125, 812–816 (1994).

    Article  CAS  PubMed  Google Scholar 

  177. Spinetto, H., Lennon, D. & Horsburgh, M. Rheumatic fever recurrence prevention: a nurse-led programme of 28-day penicillin in an area of high endemnicity. J. Paediatr. Child Health 47, 228–234 (2011).

    Article  PubMed  Google Scholar 

  178. Tubridy-Clark, M. & Carapetis, J. R. Subclinical carditis in rheumatic fever: a systematic review. Int. J. Cardiol. 119, 54–58 (2007).

    Article  PubMed  Google Scholar 

  179. Araujo, F. D., Goulart, E. M. & Meira, Z. M. Prognostic value of clinical and Doppler echocardiographic findings in children and adolescents with significant rheumatic valvular disease. Ann. Pediatr. Cardiol. 5, 120–126 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  180. Pekpak, E. et al. Rheumatic silent carditis: echocardiographic diagnosis and prognosis of long-term follow up. Pediatr. Int. 55, 685–689 (2013).

    Article  PubMed  Google Scholar 

  181. Remenyi, B. et al. Position statement of the World Heart Federation on the prevention and control of rheumatic heart disease. Nat. Rev. Cardiol. 10, 284–292 (2013).

    Article  CAS  PubMed  Google Scholar 

  182. Pelajo, C. F., Lopez-Benitez, J. M., Torres, J. M. & de Oliveira, S. K. Adherence to secondary prophylaxis and disease recurrence in 536 Brazilian children with rheumatic fever. Pediatr. Rheumatol. Online J. 8, 22 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  183. Tadele, H., Mekonnen, W. & Tefera, E. Rheumatic mitral stenosis in children: more accelerated course in sub-Saharan patients. BMC Cardiovasc. Disord. 13, 95 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  184. Heart Foundation of New Zealand. New Zealand guidelines for rheumatic fever: diagnosis, management and secondary prevention of acute rheumatic fever and rheumatic heart disease: 2014 update. Heart Foundation of New Zealand [online], (2014). This is an evidence-based guideline highlighting the importance of hospitalization for patients with ARF to facilitate echocardiography, education and commencement of secondary prophylaxis.

  185. Nishimura, R. A. et al. 2014 AHA/ACC guideline for the management of patients with valvular heart disease: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. Circulation 129, e521–e643 (2014).

    PubMed  Google Scholar 

  186. Saxena, A. et al. Prevalence and outcome of subclinical rheumatic heart disease in India: the RHEUMATIC (Rheumatic Heart Echo Utilisation and Monitoring Actuarial Trends in Indian Children) study. Heart 97, 2018–2022 (2011).

    Article  PubMed  Google Scholar 

  187. Webb, R. H. et al. Optimising echocardiographic screening for rheumatic heart disease in New Zealand: not all valve disease is rheumatic. Cardiol. Young 21, 436–443 (2011).

    Article  PubMed  Google Scholar 

  188. Paar, J. A. et al. Prevalence of rheumatic heart disease in children and young adults in Nicaragua. Am. J. Cardiol. 105, 1809–1814 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  189. Bhaya, M., Panwar, S., Beniwal, R. & Panwar, R. B. High prevalence of rheumatic heart disease detected by echocardiography in school children. Echocardiography 27, 448–453 (2010).

    Article  PubMed  Google Scholar 

  190. Carapetis, J. R. et al. Evaluation of a screening protocol using auscultation and portable echocardiography to detect asymptomatic rheumatic heart disease in Tongan schoolchildren. Nat. Clin. Pract. Cardiovasc. Med. 5, 411–417 (2008).

    Article  PubMed  Google Scholar 

  191. Marijon, E. et al. Prevalence of rheumatic heart disease detected by echocardiographic screening. N. Engl. J. Med. 357, 470–476 (2007).

    Article  CAS  PubMed  Google Scholar 

  192. Beaton, A. et al. Echocardiography screening for rheumatic heart disease in Ugandan schoolchildren. Circulation 125, 3127–3132 (2012).

    Article  PubMed  Google Scholar 

  193. Roberts, K., Colquhoun, S., Steer, A., Remenyi, B. & Carapetis, J. Screening for rheumatic heart disease: current approaches and controversies. Nat. Rev. Cardiol. 10, 49–58 (2013).

    Article  CAS  PubMed  Google Scholar 

  194. Miranda, L. P., Camargos, P. A., Torres, R. M. & Meira, Z. M. Prevalence of rheumatic heart disease in a public school of Belo Horizonte. Arq. Bras. Cardiol. 103, 89–97 (2014).

    PubMed  PubMed Central  Google Scholar 

  195. Roberts, K. V., Brown, A. D., Maguire, G. P., Atkinson, D. N. & Carapetis, J. R. Utility of auscultatory screening for detecting rheumatic heart disease in high-risk children in Australia's Northern Territory. Med. J. Aust. 199, 196–199 (2013).

    Article  PubMed  Google Scholar 

  196. Zuhlke, L. & Mayosi, B. M. Echocardiographic screening for subclinical rheumatic heart disease remains a research tool pending studies of impact on prognosis. Curr. Cardiol. Rep. 15, 343 (2013).

    Article  PubMed  Google Scholar 

  197. Remenyi, B. et al. World Heart Federation criteria for echocardiographic diagnosis of rheumatic heart disease — an evidence-based guideline. Nat. Rev. Cardiol. 9, 297–309 (2012). This article provides guidance on the Doppler and two-dimensional echocardiographic findings that are consistent with RHD. The criteria are based on consensus international expert opinion and available evidence and have been crucial for the field in standardizing diagnosis across centres.

    Article  PubMed  PubMed Central  Google Scholar 

  198. Roberts, K. et al. Echocardiographic screening for rheumatic heart disease in high and low risk Australian children. Circulation 129, 1953–1961 (2014).

    Article  PubMed  Google Scholar 

  199. Beaton, A. et al. The utility of handheld echocardiography for early diagnosis of rheumatic heart disease. J. Am. Soc. Echocardiogr. 27, 42–49 (2014).

    Article  PubMed  Google Scholar 

  200. Beaton, A. et al. Utility of handheld echocardiography for early rheumatic heart disease diagnosis: a field study. Eur. Heart J. Cardiovasc. Imaging 16, 475–482 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  201. Tani, L. Y. Echocardiographic screening for rheumatic heart disease. Circulation 129, 1912–1913 (2014).

    Article  PubMed  Google Scholar 

  202. Colquhoun, S. M. et al. Echocardiographic screening in a resource poor setting: borderline rheumatic heart disease could be a normal variant. Int. J. Cardiol. 173, 284–289 (2014).

    Article  CAS  PubMed  Google Scholar 

  203. Beaton, A. et al. Latent rheumatic heart disease: outcomes 2 years after echocardiographic detection. Pediatr. Cardiol. 35, 1259–1267 (2014).

    Article  PubMed  Google Scholar 

  204. Bhaya, M., Beniwal, R., Panwar, S. & Panwar, R. B. Two years of follow-up validates the echocardiographic criteria for the diagnosis and screening of rheumatic heart disease in asymptomatic populations. Echocardiography 28, 929–933 (2011).

    Article  PubMed  Google Scholar 

  205. Colquhoun, S. M. et al. Pilot study of nurse-led rheumatic heart disease echocardiography screening in Fiji — a novel approach in a resource-poor setting. Cardiol. Young 23, 546–552 (2013).

    Article  PubMed  Google Scholar 

  206. Kane, A. et al. Echocardiographic screening for rheumatic heart disease: age matters. Int. J. Cardiol. 168, 888–891 (2013).

    Article  PubMed  Google Scholar 

  207. Manji, R. A. et al. Cost-effectiveness analysis of rheumatic heart disease prevention strategies. Expert Rev. Pharmacoecon. Outcomes Res. 13, 715–724 (2013).

    Article  PubMed  Google Scholar 

  208. Catanzaro, F. J. et al. The role of the streptococcus in the pathogenesis of rheumatic fever. Am. J. Med. 17, 749–756 (1954).

    Article  CAS  PubMed  Google Scholar 

  209. New Zealand Heart Foundation. New Zealand guidelines for rheumatic fever 1: diagnosis, management and secondary prevention. Heart Foundation of New Zealand[online], (2006).

  210. Carter, M. E., Bywaters, E. G. & Thomas, G. T. Rheumatic fever treated with penicillin in bactericidal dosage for six weeks. Report of a small controlled trial. Br. Med. J. 1, 965–967 (1962).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Mortimer, E. A. Jr et al. The effect of penicillin on acute rheumatic fever and valvular heart disease. N. Engl. J. Med. 260, 101–112 (1959).

    Article  PubMed  Google Scholar 

  212. Markowitz, M. & Gordis, L. Rheumatic fever. Major Probl. Clin. Pediatr. 11, 1–309 (1972).

    Article  CAS  PubMed  Google Scholar 

  213. Albert, D. A., Harel, L. & Karrison, T. The treatment of rheumatic carditis: a review and meta-analysis. Medicine (Baltimore) 74, 1–12 (1995).

    Article  CAS  Google Scholar 

  214. Cilliers, A., Manyemba, J., Adler, A. J. & Saloojee, H. Anti-inflammatory treatment for carditis in acute rheumatic fever. Cochrane Database Syst. Rev. 6, CD003176 (2012). This systematic review confirms that there is no evidence-based medical treatment that alters the outcome of carditis in ARF.

    Google Scholar 

  215. Rheumatic Fever Working Party of the Medical Research Council of Great Britain and the Subcommittee of Principal Investigators of the American Council on Rheumatic Fever and Congenital Heart Disease, American Heart Association. Treatment of acute rheumatic fever in children a co-operative clinical trial of A.C.T.H., cortisone and aspirin. Circulation 11, 343–377 (1955).

    Article  Google Scholar 

  216. Voss, L. M. et al. Intravenous immunoglobulin in acute rheumatic fever: a randomized controlled trial. Circulation 103, 401–406 (2001).

    Article  CAS  PubMed  Google Scholar 

  217. Azevedo, P. M., Pereira, R. R. & Guilherme, L. Understanding rheumatic fever. Rheumatol. Int. 32, 1113–1120 (2012).

    Article  PubMed  Google Scholar 

  218. Nishimura, R. A. et al. 2014 AHA/ACC guideline for the management of patients with valvular heart disease: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. J. Am. Coll. Cardiol. 63, e57–e185 (2014). This article provides a clear guideline outlining that indications for cardiac surgery in adults are based on extensive evidence of management of adults with valvular heart disease.

    Article  PubMed  Google Scholar 

  219. Anderson, Y., Wilson, N., Nicholson, R. & Finucane, K. Fulminant mitral regurgitation due to ruptured chordae tendinae in acute rheumatic fever. J. Paediatr. Child Health 44, 134–137 (2008).

    Article  PubMed  Google Scholar 

  220. Finucane, K. & Wilson, N. Priorities in cardiac surgery for rheumatic heart disease. Glob. Heart 8, 213–220 (2013).

    Article  PubMed  Google Scholar 

  221. Cardoso, F., Vargas, A. P., Oliveira, L. D., Guerra, A. A. & Amaral, S. V. Persistent Sydenham's chorea. Mov. Disord. 14, 805–807 (1999).

    Article  CAS  PubMed  Google Scholar 

  222. Genel, F., Arslanoglu, S., Uran, N. & Saylan, B. Sydenham's chorea: clinical findings and comparison of the efficacies of sodium valproate and carbamazepine regimens. Brain Dev. 24, 73–76 (2002).

    Article  PubMed  Google Scholar 

  223. Daoud, A. S., Zaki, M., Shakir, R. & al-Saleh, Q. Effectiveness of sodium valproate in the treatment of Sydenham's chorea. Neurology 40, 1140–1141 (1990).

    Article  CAS  PubMed  Google Scholar 

  224. Pena, J., Mora, E., Cardozo, J., Molina, O. & Montiel, C. Comparison of the efficacy of carbamazepine, haloperidol and valproic acid in the treatment of children with Sydenham's chorea: clinical follow-up of 18 patients. Arq. Neuropsiquiatr. 60, 374–377 (2002).

    Article  PubMed  Google Scholar 

  225. Hashkes, P. J. et al. Naproxen as an alternative to aspirin for the treatment of arthritis of rheumatic fever: a randomized trial. J. Pediatr. 143, 399–401 (2003).

    Article  CAS  PubMed  Google Scholar 

  226. Uziel, Y. et al. The use of naproxen in the treatment of children with rheumatic fever. J. Pediatr. 137, 269–271 (2000).

    Article  CAS  PubMed  Google Scholar 

  227. Carapetis, J. R., McDonald, M. & Wilson, N. J. Acute rheumatic fever. Lancet 366, 155–168 (2005).

    Article  PubMed  Google Scholar 

  228. World Health Organization. Report of a WHO Expert Consultation on Rheumatic Fever and Rheumatic Heart Disease (WHO, 2001).

  229. Wilson, N., Voss, L. M. & Neutze, J. M. in Proceedings of the Second World Congress of Pediatric Cardiology and Cardiacsurgery (eds Imai, Y. & Momma, K. ) 971–972 (Futura Publishing Co., 1998).

    Google Scholar 

  230. Walsh, W. F. Medical management of chronic rheumatic heart disease. Heart Lung Circ. 19, 289–294 (2010).

    Article  PubMed  Google Scholar 

  231. Nishimura, R. A. et al. ACC/AHA 2008 Guideline update on valvular heart disease: focused update on infective endocarditis: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines endorsed by the Society of Cardiovascular Anesthesiologists, Society for Cardiovascular Angiography and Interventions, and Society of Thoracic Surgeons. J. Am. Coll. Cardiol 52, 676–685 (2008).

    Article  PubMed  Google Scholar 

  232. Cheung, M. M., Sullivan, I. D., de Leval, M. R., Tsang, V. T. & Redington, A. N. Optimal timing of the Ross procedure in the management of chronic aortic incompetence in the young. Cardiol. Young 13, 253–257 (2003).

    Article  PubMed  Google Scholar 

  233. Gentles, T. L. et al. Normalized end-systolic volume and pre-load reserve predict ventricular dysfunction following surgery for aortic regurgitation independent of body size. JACC Cardiovasc. Imaging 5, 626–633 (2012).

    Article  PubMed  Google Scholar 

  234. Remenyi, B. et al. Improved long-term survival for rheumatic mitral valve repair compared to replacement in the young. World J. Pediatr. Congenit. Heart Surg. 4, 155–164 (2013).

    Article  PubMed  Google Scholar 

  235. Gentles, T. L., Finucane, A. K., Remenyi, B., Kerr, A. R. & Wilson, N. J. Ventricular function before and after surgery for isolated and combined regurgitation in the young. Ann. Thorac. Surg. 100, 1383–1389 (2015).

    Article  PubMed  Google Scholar 

  236. Enriquez-Sarano, M., Akins, C. W. & Vahanian, A. Mitral regurgitation. Lancet 373, 1382–1394 (2009).

    Article  PubMed  Google Scholar 

  237. DiBardino, D. J. et al. Four decades of experience with mitral valve repair: analysis of differential indications, technical evolution, and long-term outcome. J. Thorac. Cardiovasc. Surg. 139, 76–83; discussion 83–74 (2010).

    Article  PubMed  Google Scholar 

  238. Antunes, M. J., Magalhaes, M. P., Colsen, P. R. & Kinsley, R. H. Valvuloplasty for rheumatic mitral valve disease. A surgical challenge. J. Thorac. Cardiovasc. Surg. 94, 44–56 (1987).

    CAS  PubMed  Google Scholar 

  239. Sadler, L. et al. Pregnancy outcomes and cardiac complications in women with mechanical, bioprosthetic and homograft valves. BJOG 107, 245–253 (2000).

    Article  CAS  PubMed  Google Scholar 

  240. The WHOQOL Group. The World Health Organization Quality of Life Assessment (WHOQOL): position paper from the World Health Organization. Soc. Sci. Med. 41, 1403–1409 (1995).

    Article  Google Scholar 

  241. do Nascimento Moraes, A. Health related quality of life in children with rheumatic heart diseases: reliablityof the Brazilian version of the pediatric quality of life inventory cardiac module scale. Health Qual. Life Outcomes 11, 198 (2013).

    Article  Google Scholar 

  242. Arafa, M., Zaher, S., El-Dowaty, A. & Moneeb, D. Quality of life among parents of children with heart disease. Health Qual. Life Outcomes 6 91 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  243. Essaway, M., Bahgat, Z. & Kassem, H. Health-related quality of life of school-aged children with rheumatic fever. J. Egypt Publ. Health Associ. 85, 205–222 (2010).

    Google Scholar 

  244. Wark, E., Hodder, Y., Woods, C. & Maguie, G. Patient and health-care impact of a pilot rheumatic heart disease screening program. J. Paediatr. Child Health 49, 297–302 (2013).

    Article  PubMed  Google Scholar 

  245. Pilgrim, T. et al. Protocol for a population-based study of rheumatic heart disease prevalence and cardiovascular outcomes among school children in Nepal. BMJ Open 2, e001320 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  246. Koech, M. & Ngeno, T. Perception of parents whose children have rheumatic heart disease at a referral hospital, Kenya. Bas. Res. J. Med. Clin. Sci. 3, 67–73 (2014).

    Google Scholar 

  247. Atnafe, L. The Experience of Married Women with Rheumatic Heart Disease. Thesis, Addis Ababa University (2011).

  248. Harrington, Z., Thomas, D., Currie, B. & Bulkanhawuy, J. Challenging perceptions of non-compliance with rheumatic fever prophylaxis in a remote Aboriginal community. Med. J. Aust. 184, 514–517 (2006).

    PubMed  Google Scholar 

  249. Petricca, K., Mamo, Y., Haileamlk, A., Seid, E. & Parry, E. Barriers to effective follow-up treatment for rheumatic heart disease in Jimma, Ethiopia: a grounded theory analysis of the patient experience. Ethiopian J. Health Sci. 19, 39–44 (2009).

    Google Scholar 

  250. Johnson, T. D. et al. The 5 × 5 path towards rheumatic heart disease control: outcomes from the third rheumatic heart disease forum. Glob. Heart 10, 75–78 (2014).

    Article  Google Scholar 

  251. Guilherme, L. & Kalil, J. Rheumatic fever and rheumatic heart disease: cellular mechanisms leading autoimmune reactivity and disease. J. Clin. Immunol. 30, 17–23 (2010).

    Article  PubMed  Google Scholar 

  252. Mayosi, B. et al. The Drakensberg declaration on the control of rheumatic fever and rheumatic heart disease in Africa. S. Afr. Med. J. 96, 246 (2006).

    PubMed  Google Scholar 

  253. Karthikeyan, G. et al. Rationale and design of a Global Rheumatic Heart Disease Registry: the REMEDY study. Am. Heart J. 163, 535–540 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  254. Ministry of Health and Family Welfare & Government of India Rashtriya Bal Swasthya Karyakram. Child Health Screening and Early Intervention Services under NRHM. National Health Mission[online], (2013).

  255. Nishimura, R. A. et al. 2014 AHA/ACC guideline for the management of patients with valvular heart disease: executive summary: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. J. Am. Coll. Cardiol. 63, 2438–2488 (2014).

    Article  PubMed  Google Scholar 

  256. Moran, M. et al. Neglected disease research and development: how much are we really spending? PLoS Med. 6, e30 (2009).

    Article  PubMed  Google Scholar 

  257. Dale, J. B. et al. Group A streptococcal vaccines: paving a path for accelerated development. Vaccine 31, B216–B222 (2013).

    Article  CAS  PubMed  Google Scholar 

  258. Guerino, M. T. et al. HLA class II transgenic mice develop a safe and long lasting immune response against StreptInCor, an anti-group A streptococcus vaccine candidate. Vaccine 29, 8250–8256 (2011).

    Article  CAS  PubMed  Google Scholar 

  259. Engel, M. E., Stander, R., Vogel, J., Adeyemo, A. A. & Mayosi, B. M. Genetic susceptibility to acute rheumatic fever: a systematic review and meta-analysis of twin studies. PLoS ONE 6, e25326 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  260. Fae, K. C. et al. PDIA3, HSPA5 and vimentin, proteins identified by 2-DE in the valvular tissue, are the target antigens of peripheral and heart infiltrating T cells from chronic rheumatic heart disease patients. J. Autoimmun. 31, 136–141 (2008).

    Article  CAS  PubMed  Google Scholar 

  261. Gao, G. et al. Identification of altered plasma proteins by proteomic study in valvular heart diseases and the potential clinical significance. PLoS ONE 8, e72111 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  262. Ramakrishnan, S. et al. Prevalence of rheumatic heart disease: has it declined in India? Natl Med. J. India 22, 72–74 (2009).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

M.W.C. was supported by grants HL35280 and HL56267 from the National Heart, Lung and Blood Institute, the American Heart Association and the Oklahoma Center for the Advancement of Science, all in the USA.

Author information

Authors and Affiliations

Authors

Contributions

Introduction (J.R.C.); Epidemiology (J.R.C.); Mechanisms/pathophysiology (J.R.C., L.G. and M.W.C.); Diagnosis, screening and prevention (A.B., A.S., C.S. and J.R.C.); Management (J.R.C. and N.W.); Quality of life (J.R.C., L.Z. and R.W.); Outlook (B.M.M., G.K. and J.R.C.); overview of Primer (J.R.C.).

Corresponding author

Correspondence to Jonathan R. Carapetis.

Ethics declarations

Competing interests

G.K., L.Z., A.S., J.R.C., A.B., N.W., L.G., C.S., R.W. and B.M.M. have no conflict of interest. M.W.C. has financial interest in and is Chief Scientific Officer of Moleculera Labs, a company offering diagnostic testing for neurological disorders.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Carapetis, J., Beaton, A., Cunningham, M. et al. Acute rheumatic fever and rheumatic heart disease. Nat Rev Dis Primers 2, 15084 (2016). https://doi.org/10.1038/nrdp.2015.84

Download citation

  • Published:

  • DOI: https://doi.org/10.1038/nrdp.2015.84

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing