Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Primer
  • Published:

Syphilis

Abstract

Treponema pallidum subspecies pallidum (T. pallidum) causes syphilis via sexual exposure or via vertical transmission during pregnancy. T. pallidum is renowned for its invasiveness and immune-evasiveness; its clinical manifestations result from local inflammatory responses to replicating spirochaetes and often imitate those of other diseases. The spirochaete has a long latent period during which individuals have no signs or symptoms but can remain infectious. Despite the availability of simple diagnostic tests and the effectiveness of treatment with a single dose of long-acting penicillin, syphilis is re-emerging as a global public health problem, particularly among men who have sex with men (MSM) in high-income and middle-income countries. Syphilis also causes several hundred thousand stillbirths and neonatal deaths every year in developing nations. Although several low-income countries have achieved WHO targets for the elimination of congenital syphilis, an alarming increase in the prevalence of syphilis in HIV-infected MSM serves as a strong reminder of the tenacity of T. pallidum as a pathogen. Strong advocacy and community involvement are needed to ensure that syphilis is given a high priority on the global health agenda. More investment is needed in research on the interaction between HIV and syphilis in MSM as well as into improved diagnostics, a better test of cure, intensified public health measures and, ultimately, a vaccine.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Treponema pallidum.
Figure 2: Incidence of syphilis worldwide.
Figure 3: Molecular architecture of the cell envelope of Treponema pallidum.
Figure 4: Treponema pallidum invasion.
Figure 5: Clinical presentation of primary, secondary and congenital syphilis.
Figure 6: Serological response to primary and secondary syphilis.
Figure 7: Screening algorithms for syphilis.

Similar content being viewed by others

References

  1. Giacani, L. & Lukehart, S. A. The endemic treponematoses. Clin. Microbiol. Rev. 27, 89–115 (2014).

    Google Scholar 

  2. Smajs, D., Norris, S. J. & Weinstock, G. M. Genetic diversity in Treponema pallidum: implications for pathogenesis, evolution and molecular diagnostics of syphilis and yaws. Infect. Genet. Evol. 12, 191–202 (2012).

    Google Scholar 

  3. de Melo, F. L., de Mello, J. C. M., Fraga, A. M., Nunes, K. & Eggers, S. Syphilis at the crossroad of phylogenetics and paleopathology. PLoS Negl. Trop. Dis. 4, e575 (2010).

    Google Scholar 

  4. Penn, C. W. Avoidance of host defences by Treponema pallidum in situ and on extraction from infected rabbit testes. J. Gen. Microbiol. 126, 69–75 (1981).

    Google Scholar 

  5. Stamm, L. V., Hodinka, R. L., Wyrick, P. B. & Bassford, P. J. Changes in the cell surface properties of Treponema pallidum that occur during in vitro incubation of freshly extracted organisms. Infect. Immun. 55, 2255–2261 (1987).

    Google Scholar 

  6. Salazar, J. C., Rathi, A., Michael, N. L., Radolf, J. D. & Jagodzinski, L. L. Assessment of the kinetics of Treponema pallidum dissemination into blood and tissues in experimental syphilis by real-time quantitative PCR. Infect. Immun. 75, 2954–2958 (2007).

    Google Scholar 

  7. Thomas, D. D. et al. Treponema pallidum invades intercellular junctions of endothelial cell monolayers. Proc. Natl Acad. Sci. USA 85, 3608–3612 (1988).

    Google Scholar 

  8. LaFond, R. E. & Lukehart, S. A. Biological basis for syphilis. Clin. Microbiol. Rev. 19, 29–49 (2006).

    Google Scholar 

  9. Radolf, J. D., Tramont, E. C. & Salazar, J. C. in Mandell, Douglas and Bennett's Principles and Practice of Infectious Diseases 8 th edn (eds Bennett, J. E., Dolin, R. & Blaser, M. J. ) 2684–2709 (Saunders, 2014).

    Google Scholar 

  10. Cruz, A. R. et al. Immune evasion and recognition of the syphilis spirochete in blood and skin of secondary syphilis patients: two immunologically distinct compartments. PLoS Negl. Trop. Dis. 6, e1717 (2012).

    Google Scholar 

  11. World Health Organisation. WHO guidelines for the treatment of Treponema pallidum (syphilis). WHOhttp://www.who.int/reproductivehealth/publications/rtis/syphilis-treatment-guidelines/en/ (2016).

  12. Workowski, K. A. & Bolan, G. A. & Centers for Disease Control & Prevention. Sexually transmitted diseases treatment guidelines, 2015. MMWR Recommen. Rep. 64, 1–137 (2015).

    Google Scholar 

  13. Janier, M. et al. 2014 European guideline on the management of syphilis. J. Eur. Acad. Dermatol. Venereol. 28, 1581–1593 (2014).

    Google Scholar 

  14. Peeling, R. W. & Hook, E. W. The pathogenesis of syphilis: the Great Mimicker, revisited. J. Pathol. 208, 224–232 (2005).

    Google Scholar 

  15. Rolfs, R. T. et al. A randomized trial of enhanced therapy for early syphilis in patients with and without human immunodeficiency virus infection. N. Engl. J. Med. 337, 307–314 (1997).

    Google Scholar 

  16. Golden, M. R., Marra, C. M. & Holmes, K. K. Update on syphilis. JAMA 290, 1510 (2003).

    Google Scholar 

  17. Lukehart, S. A. et al. Invasion of the central nervous system by Treponema pallidum: implications for diagnosis and treatment. Ann. Intern. Med. 109, 855–862 (1988).

    Google Scholar 

  18. Shaffi, T., Radolf, J. D., Sanchez, P. J., Schulz, K. F. & Murphy, F. K. in Sexually Transmitted Diseases 4th edn (eds Holmes, K. K. et al. ) 1577 –1609 (McGraw-Hill Medical, 2008).

    Google Scholar 

  19. Sánchez, P. J. et al. Evaluation of molecular methodologies and rabbit infectivity testing for the diagnosis of congenital syphilis and neonatal central nervous system invasion by Treponema pallidum. J. Infect. Dis. 167, 148–157 (1993).

    Google Scholar 

  20. Fiurmara, N. J. Congenital syphilis in Massachusetts. N. Engl. J. Med. 245, 634–640 (1951).

    Google Scholar 

  21. Watson-Jones, D. et al. Syphilis in pregnancy in Tanzania. I. Impact maternal syphilis outcome pregnancy. J. Infect. Dis. 186, 940–947 (2002). A comprehensive and well-designed study that showed the outcomes of syphilis during pregnancy.

    Google Scholar 

  22. Magnuson, H. J., Eagle, H. & Fleischman, R. The minimal infectious inoculum of Spirochaeta pallida (Nichols strain) and a consideration of its rate of multiplication in vivo. Am. J. Syph. Gonorrhea Vener. Dis. 32, 1–18 (1948).

    Google Scholar 

  23. Newman, L. et al. Global estimates of syphilis in pregnancy and associated adverse outcomes: analysis of multinational antenatal surveillance data. PLoS Med. 10, e1001396 (2013).

    Google Scholar 

  24. Wijesooriya, N. S. et al. Global burden of maternal and congenital syphilis in 2008 and 2012: a health systems modelling study. Lancet Glob. Health 4, e525–e533 (2016). This paper is one of three WHO studies that have provided the backbone of our data on the global burden of syphilis; it provided updated global estimates in pregnant women and of adverse pregnancy outcomes 5 years into the global programme for congenital syphilis elimination (that is, monitoring progress).

    Google Scholar 

  25. Lawn, J. E. et al. Stillbirths: rates, risk factors, and acceleration towards 2030. Lancet 387, 587–603 (2016). The first paper that showed that syphilis has emerged as the leading cause of preventable stillbirths.

    Google Scholar 

  26. Hook, E. W. & Peeling, R. W. Syphilis control — a continuing challenge. N. Engl. J. Med. 351, 122–124 (2004).

    Google Scholar 

  27. Newman, L. et al. Global estimates of the prevalence and incidence of four curable sexually transmitted infections in 2012 based on systematic review and global reporting. PLoS ONE 10, e0143304 (2015).

    Google Scholar 

  28. Black, V. et al. Field evaluation of Standard Diagnostics’ Bioline HIV/Syphilis Duo test among female sex workers in Johannesburg, South Africa. Sex. Transm. Infect. 92, 495–498 (2016).

    Google Scholar 

  29. Elhadi, M. et al. Integrated bio-behavioural HIV surveillance surveys among female sex workers in Sudan, 2011–2012. Sex. Transm. Infect. 89, S17–S22 (2013).

    Google Scholar 

  30. Vandepitte, J. et al. HIV and other sexually transmitted infections in a cohort of women involved in high-risk sexual behavior in Kampala, Uganda. Sex. Transm. Dis. 38, 316–323 (2011).

    Google Scholar 

  31. McLaughlin, M. M. et al. Sexually transmitted infections among heterosexual male clients of female sex workers in China: a systematic review and meta-analysis. PLoS ONE 8, e71394 (2013).

    Google Scholar 

  32. Su, S. et al. Sustained high prevalence of viral hepatitis and sexually transmissible infections among female sex workers in China: a systematic review and meta-analysis. BMC Infect. Dis. 16, 2 (2015).

    Google Scholar 

  33. Chen, X.-S. et al. Prevalence of syphilis infection in different tiers of female sex workers in China: implications for surveillance and interventions. BMC Infect. Dis. 12, 84 (2012).

    Google Scholar 

  34. Abara, W. E., Hess, K. L., Neblett Fanfair, R., Bernstein, K. T. & Paz-Bailey, G. Syphilis trends among men who have sex with men in the United States and western Europe: a systematic review of trend studies published between 2004 and 2015. PLoS ONE 11, e0159309 (2016). A good review that described the alarming increase of syphilis in MSM in the developed world.

    Google Scholar 

  35. de Voux, A. et al. State-specific rates of primary and secondary syphilis among men who have sex with men - United States, 2015. MMWR. Morb. Mortal. Wkly Rep. 66, 349–354 (2017).

    Google Scholar 

  36. Burchell, A. N. et al. High incidence of diagnosis with syphilis co-infection among men who have sex with men in an HIV cohort in Ontario, Canada. BMC Infect. Dis. 15, 356 (2015).

    Google Scholar 

  37. Centers for Disease Control and Prevention. Syphilis treatment and care. Centers for Disease Control and Preventionhttps://www.cdc.gov/std/syphilis/treatment.htm (2015).

  38. Brodsky, J. L. et al. Syphilis outbreak at a California men's prison, 2007-2008: propagation by lapses in clinical management, case management, and public health surveillance. J. Correct. Health Care 19, 54–64 (2012).

    Google Scholar 

  39. Van Wagoner, N. J., Harbison, H. S., Drewry, J., Turnipseed, E. & Hook, E. W. Characteristics of women reporting multiple recent sex partners presenting to a sexually transmitted disease clinic for care. Sex. Transm. Dis. 38, 210–215 (2011).

    Google Scholar 

  40. Bibbins-Domingo, K. et al. Screening for syphilis infection in nonpregnant adults and adolescents. JAMA 315, 2321 (2016).

    Google Scholar 

  41. European Centre for Disease Prevention and Control. Antenatal screening for HIV, hepatitis B, syphilis and rubella susceptibility in the EU/EEA. European Centre for Disease Prevention and Controlhttp://ecdc.europa.eu/en/publications/Publications/antenatal-screening-sci-advice-2017.pdf (2017).

  42. Rekart, M. L. et al. A double-edged sword: does highly active antiretroviral therapy contribute to syphilis incidence by impairing immunity to Treponema pallidum? Sex. Transm. Infect. 93, 374–378 (2017). This paper presented an interesting hypothesis to explain the twin epidemics of HIV and syphilis in MSM.

    Google Scholar 

  43. Schmid, G. P., Stoner, B. P., Hawkes, S. & Broutet, N. The need and plan for global elimination of congenital syphilis. Sex. Transm. Dis. 34, S5–S10 (2007).

    Google Scholar 

  44. World Health Organisation. The global elimination of congenital syphilis: rationale and strategy for action. WHOhttp://www.who.int/reproductivehealth/publications/rtis/9789241595858/en/ (2007).

  45. Gomez, G. B. et al. Untreated maternal syphilis and adverse outcomes of pregnancy: a systematic review and meta-analysis. Bull. World Health Organ. 91, 217–226 (2013).

    Google Scholar 

  46. Blencowe, H., Cousens, S., Kamb, M., Berman, S. & Lawn, J. E. Lives Saved Tool supplement detection and treatment of syphilis in pregnancy to reduce syphilis related stillbirths and neonatal mortality. BMC Public Health 11, S9 (2011).

    Google Scholar 

  47. WHO. Investment case for eliminating mother-to-child transmission of syphilis. WHOhttp://apps.who.int/iris/bitstream/10665/75480/1/9789241504348_eng.pdf?ua=1 (2012).

  48. Kahn, J. G. et al. The cost and cost-effectiveness of scaling up screening and treatment of syphilis in pregnancy: a model. PLoS ONE 9, e87510 (2014).

    Google Scholar 

  49. Kuznik, A., Lamorde, M., Nyabigambo, A. & Manabe, Y. C. Antenatal syphilis screening using point-of-care testing in sub-Saharan African countries: a cost-effectiveness analysis. PLoS Med. 10, e1001545 (2013).

    Google Scholar 

  50. Kuznik, A., Muhumuza, C., Komakech, H., Marques, E. M. R. & Lamorde, M. Antenatal syphilis screening using point-of-care testing in low- and middle-income countries in Asia and Latin America: a cost-effectiveness analysis. PLoS ONE 10, e0127379 (2015).

    Google Scholar 

  51. Owusu-Edusei, K. et al. Cost-effectiveness of integrated routine offering of prenatal HIV and syphilis screening in China. Sex. Transm. Dis. 41, 103–110 (2014).

    Google Scholar 

  52. Pan American Health Organization. Regional initiative for the elimination of mother-to-child transmission of HIV and congenital syphilis in Latin America and the Caribbean. Concept document for the Caribbean. Pan American Health Organizationhttp://www.paho.org/clap/index.php?option=com_content&view=article&id=104:iniciativa-regional-para-la-eliminacion-de-la-transmision-maternoinfantil-de-vih-y-de-la-sifilis&Itemid=234&lang=en (2009).

  53. Chen, X., Yin, Y., Wang, Q. & Wang, B. Historical perspective of syphilis in the past 60 years in China: eliminated, forgotten, on the return. Chin. Med. J. (Engl.). 126, 2774–2779 (2013). Many lessons can be learnt from this account of the history of syphilis in China, which was once eliminated but has now come back with a vengeance.

    Google Scholar 

  54. Taylor, M. et al. Elimination of mother-to-child transmission of HIV and Syphilis (EMTCT): process, progress, and program integration. PLoS Med. 14, e1002329 (2017). This paper described a success story of syphilis control and elimination, and highlighted how continuing global efforts can achieve an AIDS-free and syphilis-free generation.

    Google Scholar 

  55. Norris, S. J., Cox, D. L. & Weinstock, G. M. Biology of Treponema pallidum: correlation of functional activities with genome sequence data. J. Mol. Microbiol. Biotechnol. 3, 37–62 (2001).

    Google Scholar 

  56. Penn, C. W., Cockayne, A. & Bailey, M. J. The outer membrane of Treponema pallidum: biological significance and biochemical properties. J. Gen. Microbiol. 131, 2349–2357 (1985).

    Google Scholar 

  57. Radolf, J. D. Treponema pallidum and the quest for outer membrane proteins. Mol. Microbiol. 16, 1067–1073 (1995).

    Google Scholar 

  58. Silver, A. C. et al. MyD88 deficiency markedly worsens tissue inflammation and bacterial clearance in mice infected with Treponema pallidum, the agent of syphilis. PLoS ONE 8, e71388 (2013).

    Google Scholar 

  59. Turner, T. B., Hardy, P. H. & Newman, B. Infectivity tests in syphilis. Sex. Transm. Infect. 45, 183–195 (1969).

    Google Scholar 

  60. Lukehart, S. A. & Marra, C. M. Current Protocols in Microbiology (John Wiley and Sons, Inc., 2007).

    Google Scholar 

  61. Sell, S. & Norris, S. J. The biology, pathology, and immunology of syphilis. Int. Rev. Exp. Pathol. 24, 203–276 (1983).

    Google Scholar 

  62. Lukehart, S. A. Scientific monogamy: thirty years dancing with the same bug. Sex. Transm. Dis. 35, 2–7 (2008).

    Google Scholar 

  63. Radolf, J. D. et al. Treponema pallidum, the syphilis spirochete: making a living as a stealth pathogen. Nat. Rev. Microbiol. 14, 744–759 (2016). The review provided a very informative summary of the interaction of T. pallidum and its human hosts.

    Google Scholar 

  64. Paster, B. J. & Dewhirst, F. in Pathogenic Treponema: Molecular and Cellular Biology (eds Radolf, J. D. & Lukehart, S. A. ) 9–18 (Horizon Scientific Press, 2006).

    Google Scholar 

  65. Fraser, C. M. Complete genome sequence of Treponema pallidum, the syphilis spirochete. Science 281, 375–388 (1998).

    Google Scholar 

  66. Radolf, J. D. et al. Characterization of outer membranes isolated from Treponema pallidum, the syphilis spirochete. Infect. Immun. 63, 4244–4252 (1995).

    Google Scholar 

  67. Cox, D. L., Akins, D. R., Porcella, S. F., Norgard, M. V. & Radolf, J. D. Treponema pallidum in gel microdroplets: a novel strategy for investigation of treponemal molecular architecture. Mol. Microbiol. 15, 1151–1164 (1995).

    Google Scholar 

  68. Radolf, J. D., Hazlett, K. R. O. & Lukehart, S. A. in Pathogenic Treponemes: Cellular and Molecular Biology (eds Radolf, J. D. & Lukehart, S. A. ) 197–236 (Horizon Scientific Press, 2006).

    Google Scholar 

  69. Salazar, J. C., Hazlett, K. R. O. & Radolf, J. D. The immune response to infection with Treponema pallidum, the stealth pathogen. Microbes Infect. 4, 1133–1140 (2002).

    Google Scholar 

  70. Chamberlain, N. R., Brandt, M. E., Erwin, A. L., Radolf, J. D. & Norgard, M. V. Major integral membrane protein immunogens of Treponema pallidum are proteolipids. Infect. Immun. 57, 2872–2877 (1989).

    Google Scholar 

  71. Purcell, B. K., Swancutt, M. A. & Radolf, J. D. Lipid modification of the 15 kiloDalton major membrane immunogen of Treponema pallidum. Mol. Microbiol. 4, 1371–1379 (1990).

    Google Scholar 

  72. Akins, D. R., Purcell, B. K., Mitra, M. M., Norgard, M. V. & Radolf, J. D. Lipid modification of the 17-kilodalton membrane immunogen of Treponema pallidum determines macrophage activation as well as amphiphilicity. Infect. Immun. 61, 1202–1210 (1993).

    Google Scholar 

  73. Radolf, J. D., Chamberlain, N. R., Clausell, A. & Norgard, M. V. Identification and localization of integral membrane proteins of virulent Treponema pallidum subsp. pallidum by phase partitioning with the nonionic detergent triton X-114. Infect. Immun. 56, 490–498 (1988).

    Google Scholar 

  74. Cox, D. L., Chang, P., McDowall, A. W. & Radolf, J. D. The outer membrane, not a coat of host proteins, limits antigenicity of virulent Treponema pallidum. Infect. Immun. 60, 1076–1083 (1992).

    Google Scholar 

  75. Deka, R. K. et al. Crystal structure of the Tp34 (TP0971) lipoprotein of Treponema pallidum: implications of its metal-bound state and affinity for human lactoferrin. J. Biol. Chem. 282, 5944–5958 (2006).

    Google Scholar 

  76. Cameron, C. E., Brouwer, N. L., Tisch, L. M. & Kuroiwa, J. M. Y. Defining the interaction of the Treponema pallidum adhesin Tp0751 with laminin. Infect. Immun. 73, 7485–7494 (2005).

    Google Scholar 

  77. Houston, S., Hof, R., Honeyman, L., Hassler, J. & Cameron, C. E. Activation and proteolytic activity of the Treponema pallidum metalloprotease, pallilysin. PLoS Pathog. 8, e1002822 (2012).

    Google Scholar 

  78. Houston, S. et al. The multifunctional role of the pallilysin-associated Treponema pallidum protein, Tp0750, in promoting fibrinolysis and extracellular matrix component degradation. Mol. Microbiol. 91, 618–634 (2014).

    Google Scholar 

  79. Parker, M. L. et al. The structure of Treponema pallidum Tp0751 (pallilysin) reveals a non-canonical lipocalin fold that mediates adhesion to extracellular matrix components and interactions with host cells. PLOS Pathog. 12, e1005919 (2016).

    Google Scholar 

  80. Cameron, C. E. et al. Heterologous expression of the Treponema pallidum laminin-binding adhesin Tp0751 in the culturable spirochete Treponema phagedenis. J. Bacteriol. 190, 2565–2571 (2008).

    Google Scholar 

  81. Lithgow, K. V. et al. A defined syphilis vaccine candidate inhibits dissemination of Treponema pallidum subspecies pallidum. Nat. Commun. 8, 14273 (2017).

    Google Scholar 

  82. Chan, K. et al. Treponema pallidum lipoprotein TP0435 expressed in Borrelia burgdorferi produces multiple surface/periplasmic isoforms and mediates adherence. Sci. Rep. 6, 25593 (2016).

    Google Scholar 

  83. Luthra, A. et al. The transition from closed to open conformation of Treponema pallidum outer membrane-associated lipoprotein TP0453 involves membrane sensing and integration by two amphipathic helices. J. Biol. Chem. 286, 41656–41668 (2011).

    Google Scholar 

  84. Desrosiers, D. C. et al. TP0326, a Treponema pallidum β-barrel assembly machinery A (BamA) orthologue and rare outer membrane protein. Mol. Microbiol. 80, 1496–1515 (2011).

    Google Scholar 

  85. Luthra, A. et al. A homology model reveals novel structural features and an immunodominant surface loop/opsonic target in the Treponema pallidum BamA ortholog TP_0326. J. Bacteriol. 197, 1906–1920 (2015).

    Google Scholar 

  86. Rollauer, S. E., Sooreshjani, M. A., Noinaj, N. & Buchanan, S. K. Outer membrane protein biogenesis in Gram-negative bacteria. Phil. Trans. R. Soc. B Biol. Sci. 370, 20150023 (2015).

    Google Scholar 

  87. Centurion-Lara, A. et al. Treponema pallidum major sheath protein homologue Tpr K is a target of opsonic antibody and the protective immune response. J. Exp. Med. 189, 647–656 (1999).

    Google Scholar 

  88. Hazlett, K. R. O. et al. The Tprk protein of Treponema pallidum is periplasmic and is not a target of opsonic antibody or protective immunity. J. Exp. Med. 193, 1015–1026 (2001).

    Google Scholar 

  89. Centurion-Lara, A. et al. Gene conversion: a mechanism for generation of heterogeneity in the tprK gene of Treponema pallidum during infection. Mol. Microbiol. 52, 1579–1596 (2004).

    Google Scholar 

  90. LaFond, R. E., Centurion-Lara, A., Godornes, C., Van Voorhis, W. C. & Lukehart, S. A. TprK sequence diversity accumulates during infection of rabbits with Treponema pallidum subsp. pallidum Nichols strain. Infect. Immun. 74, 1896–1906 (2006).

    Google Scholar 

  91. Giacani, L. et al. Antigenic variation in Treponema pallidum: TprK sequence diversity accumulates in response to immune pressure during experimental syphilis. J. Immunol. 184, 3822–3829 (2010).

    Google Scholar 

  92. Pinto, M. et al. Genome-scale analysis of the non-cultivable Treponema pallidum reveals extensive within-patient genetic variation. Nat. Microbiol. 2, 16190 (2016).

    Google Scholar 

  93. Anand, A. et al. TprC/D (Tp0117/131), a trimeric, pore-forming rare outer membrane protein of Treponema pallidum, has a bipartite domain structure. J. Bacteriol. 194, 2321–2333 (2012).

    Google Scholar 

  94. Anand, A. et al. Bipartite topology of Treponema pallidum repeat proteins C/D and I: outer membrane insertion, trimerization, and porin function require a C-terminal β-barrel domain. J. Biol. Chem. 290, 12313–12331 (2015).

    Google Scholar 

  95. Giacani, L. et al. TP0262 is a modulator of promoter activity of tpr subfamily II genes of Treponema pallidum ssp. pallidum. Mol. Microbiol. 72, 1087–1099 (2009).

    Google Scholar 

  96. Radolf, J. D. & Desrosiers, D. C. Treponema pallidum, the stealth pathogen, changes, but how? Mol. Microbiol. 72, 1081–1086 (2009).

    Google Scholar 

  97. Brinkman, M. B. et al. A novel Treponema pallidum antigen, TP0136, is an outer membrane protein that binds human fibronectin. Infect. Immun. 76, 1848–1857 (2008).

    Google Scholar 

  98. Cameron, C. E., Brown, E. L., Kuroiwa, J. M. Y., Schnapp, L. M. & Brouwer, N. L. Treponema pallidum fibronectin-binding proteins. J. Bacteriol. 186, 7019–7022 (2004).

    Google Scholar 

  99. Ke, W., Molini, B. J., Lukehart, S. A. & Giacani, L. Treponema pallidum subsp. pallidum TP0136 protein is heterogeneous among isolates and binds cellular and plasma fibronectin via its NH2-terminal end. PLoS Negl. Trop. Dis. 9, e0003662 (2015).

    Google Scholar 

  100. Harman, M., Vig, D. K., Radolf, J. D. & Wolgemuth, C. W. Viscous dynamics of Lyme disease and syphilis spirochetes reveal flagellar torque and drag. Biophys. J. 105, 2273–2280 (2013).

    Google Scholar 

  101. Riley, B. S., Oppenheimer-Marks, N., Hansen, E. J., Radolf, J. D. & Norgard, M. V. Virulent Treponema pallidum activates human vascular endothelial cells. J. Infect. Dis. 165, 484–493 (1992).

    Google Scholar 

  102. Quatresooz, P. & Piérard, G. E. Skin homing of Treponema pallidum in early syphilis: an immunohistochemical study. Appl. Immunohistochem. Mol. Morphol. 17, 47–50 (2009).

    Google Scholar 

  103. Bouis, D. A., Popova, T. G., Takashima, A. & Norgard, M. V. Dendritic cells phagocytose and are activated by Treponema pallidum. Infect. Immun. 69, 518–528 (2001).

    Google Scholar 

  104. Moore, M. W. et al. Phagocytosis of Borrelia burgdorferi and Treponema pallidum potentiates innate immune activation and induces gamma interferon production. Infect. Immun. 75, 2046–2062 (2007).

    Google Scholar 

  105. Salazar, J. C. et al. Treponema pallidum elicits innate and adaptive cellular immune responses in skin and blood during secondary syphilis: a flow-cytometric analysis. J. Infect. Dis. 195, 879–887 (2007).

    Google Scholar 

  106. Stary, G. et al. Host defense mechanisms in secondary syphilitic lesions. Am. J. Pathol. 177, 2421–2432 (2010).

    Google Scholar 

  107. Van Voorhis, W. C. et al. Primary and secondary syphilis lesions contain mRNA for Th1 cytokines. J. Infect. Dis. 173, 491–495 (1996).

    Google Scholar 

  108. Van Voorhis, W. C., Barrett, L. K., Nasio, J. M., Plummer, F. A. & Lukehart, S. A. Lesions of primary and secondary syphilis contain activated cytolytic T cells. Infect. Immun. 64, 1048–1050 (1996).

    Google Scholar 

  109. McBroom, R. L. et al. Secondary syphilis in persons infected with and not infected with HIV-1: a comparative immunohistologic study. Am. J. Dermatopathol. 21, 432 (1999).

    Google Scholar 

  110. Radolf, J. D. & Lukehart, S. A. in Pathogenic Treponemes: Cellular and Molecular Biology (eds Radolf, J. D. & Lukehart, S. A. ) 285–322 (Horizon Scientific Press, 2006).

    Google Scholar 

  111. Lukehart, S. A. L., Shaffer, J. M. & Baker-Zander, S. A. Subpopulation of Treponema pallidum is resistant to phagocytosis: possible mechanism of persistence. J. Infect. Dis. 166, 1449–1453 (1992).

    Google Scholar 

  112. Cox, D. L. et al. Surface immunolabeling and consensus computational framework to identify candidate rare outer membrane proteins of Treponema pallidum. Infect. Immun. 78, 5178–5194 (2010).

    Google Scholar 

  113. Nelson, R. A. Jr. & Mayer, M. M. Immobilization of Treponema pallidum in vitro by antibody produced in syphilitic infection. J. Exp. Med. 89, 369–393 (1949).

    Google Scholar 

  114. Bishop, N. H. & Miller, J. N. Humoral immunity in experimental syphilis. II. The relationship of neutralizing factors in immune serum to acquired resistance. J. Immunol. 117, 197–207 (1976).

    Google Scholar 

  115. Giacani, L., Lukehart, S. & Centurion-Lara, A. Length of guanosine homopolymeric repeats modulates promoter activity of subfamily II tpr genes of Treponema pallidum ssp. pallidum. FEMS Immunol. Med. Microbiol. 51, 289–301 (2007).

    Google Scholar 

  116. Giacani, L. et al. Transcription of TP0126, Treponema pallidum putative OmpW Homolog, is regulated by the length of a homopolymeric guanosine repeat. Infect. Immun. 83, 2275–2289 (2015).

    Google Scholar 

  117. Deitsch, K. W., Lukehart, S. A. & Stringer, J. R. Common strategies for antigenic variation by bacterial, fungal and protozoan pathogens. Nat. Rev. Microbiol. 7, 493–503 (2009).

    Google Scholar 

  118. Harter, C. & Benirschke, K. Fetal syphilis in the first trimester. Am. J. Obstet. Gynecol. 124, 705–711 (1976).

    Google Scholar 

  119. Qin, J. et al. Reported estimates of adverse pregnancy outcomes among women with and without syphilis: a systematic review and meta-analysis. PLoS ONE 9, e102203 (2014). Together with Ref. 45, these two large systematic reviews estimated the extent of adverse pregnancy outcomes caused by untreated maternal syphilis and provided our best evidence on adverse pregnancy outcomes associated with syphilis.

    Google Scholar 

  120. Muller, I. et al. Is serological testing a reliable tool in laboratory diagnosis of syphilis? Meta-analysis of eight external quality control surveys performed by the German Infection Serology Proficiency Testing Program. J. Clin. Microbiol. 44, 1335–1341 (2006).

    Google Scholar 

  121. Parekh, B. S. et al. Dried tube specimens: a simple and cost-effective method for preparation of HIV proficiency testing panels and quality control materials for use in resource-limited settings. J. Virol. Methods 163, 295–300 (2010).

    Google Scholar 

  122. Beber, A. M. B., Sabidó, M., Vieira, J. M. R., Bazzo, M. L. & Benzaken, A. S. External quality assessment in the voluntary counseling and testing centers in the Brazilian Amazon using dried tube specimens: results of an effectiveness evaluation. Rev. Soc. Bras. Med. Trop. 48, 87–97 (2015).

    Google Scholar 

  123. Benzaken, A. S. et al. External quality assurance with dried tube specimens (DTS) for point-of-care syphilis and HIV tests: experience in an indigenous populations screening programme in the Brazilian Amazon. Sex. Transm. Infect. 90, 14–18 (2013).

    Google Scholar 

  124. Smit, P. W. et al. The development and validation of dried blood spots for external quality assurance of syphilis serology. BMC Infect. Dis. 13, 102 (2013).

    Google Scholar 

  125. Sparling, P. F. in Sexually Transmitted Diseases 3rd edn (eds Holmes, K. K., Sparling, P. F. & Mardh, P. A. ) 473–478 (McGraw-Hill Medical, 1999).

    Google Scholar 

  126. Centre for Disease Control and Prevention & Pan American Health Organization. Syphilis testing practices in the Americas region: results of the 2014 survey. Pan American Health Organizationhttp://www2.paho.org/hq/index.php?option=com_docman&task=doc_view&Itemid=270&gid=37676&lang=en (2016).

  127. Chi, K.-H. et al. Molecular differentiation of Treponema pallidum subspecies in skin ulceration clinically suspected as yaws in Vanuatu using real-time multiplex PCR and serological methods. Am. J. Trop. Med. Hyg. 92, 134–138 (2014).

    Google Scholar 

  128. Liu, H., Rodes, B., Chen, C.-Y. & Steiner, B. New tests for syphilis: rational design of a PCR method for detection of Treponema pallidum in clinical specimens using unique regions of the DNA polymerase I Gene. J. Clin. Microbiol. 39, 1941–1946 (2001).

    Google Scholar 

  129. Gayet-Ageron, A., Lautenschlager, S., Ninet, B., Perneger, T. V. & Combescure, C. Sensitivity, specificity and likelihood ratios of PCR in the diagnosis of syphilis: a systematic review and meta-analysis. Sex. Transm. Infect. 89, 251–256 (2013).

    Google Scholar 

  130. Castro, R. et al. Detection of Treponema pallidum sp. pallidum DNA in cerebrospinal fluid (CSF) by two PCR techniques. J. Clin. Lab. Anal. 30, 628–632 (2016).

    Google Scholar 

  131. Fraga, D. et al. Detection of Treponema pallidum by semi-nested PCR in the cerebrospinal fluid of asymptomatic HIV-infected patients with latent syphilis. Clin. Lab. 60, 2051–2054 (2014).

    Google Scholar 

  132. Creegan, L. et al. An evaluation of the relative sensitivities of the venereal disease research laboratory test and the Treponema pallidum particle agglutination test among patients diagnosed with primary syphilis. Sex. Transm. Dis. 34, 1016–1018 (2007).

    Google Scholar 

  133. Wende, R. D., Mudd, R. L., Know, J. M. & Holder, W. R. The VDRL slide test in 322 cases of darkfield positive primary syphilis. South. Med. J. 64, 633–634 (1971).

    Google Scholar 

  134. Peeling, R. W., Holmes, K. K., Mabey, D. & Ronald, A. Rapid tests for sexually transmitted infections (STIs): the way forward. Sex. Transm. Infect. 82 (Suppl. 5), 1–6 (2006).

    Google Scholar 

  135. Pastuszczak, M. et al. Robust pro-inflammatory immune response is associated with serological cure in patients with syphilis: an observational study. Sex. Transm. Infect. 93, 11–14 (2016).

    Google Scholar 

  136. Larsen, S. A. & Johnson, R. E. A Manual of Tests for Syphilis: Diagnostic Tests 9th edn https://www.cdc.gov/std/syphilis/manual-1998/chapt1.pdf (1998).

  137. Sparling, P. F. Diagnosis and treatment of syphilis. N. Engl. J. Med. 284, 642–653 (1971).

    Google Scholar 

  138. Fiumara, N. J. Posttreatment serological response of biologic false-positive reactors. JAMA 247, 817–818 (1982).

    Google Scholar 

  139. Donkers, A., Levy, H. R. & Letens-van Vliet, A. Syphilis detection using the Siemens ADVIA Centaur Syphilis treponemal assay. Clin. Chim. Acta 433, 84–87 (2014).

    Google Scholar 

  140. Gomez, E., Jespersen, D. J., Harring, J. A. & Binnicker, M. J. Evaluation of the Bio-Rad BioPlex 2200 syphilis multiplex flow immunoassay for the detection of IgM- and IgG-class antitreponemal antibodies. Clin. Vaccine Immunol. 17, 966–968 (2010).

    Google Scholar 

  141. Sambri, V. et al. Western immunoblotting with five Treponema pallidum recombinant antigens for serologic diagnosis of syphilis. Clin. Vaccine Immunol. 8, 534–539 (2001).

    Google Scholar 

  142. Wong, E. H. et al. Evaluation of an IgM/IgG sensitive enzyme immunoassay and the utility of index values for the screening of syphilis infection in a high-risk population. Sex. Transm. Dis. 38, 528–532 (2011).

    Google Scholar 

  143. Centers for Disease Control and Prevention (CDC). Discordant results from reverse sequence syphilis screening — five laboratories, United States, 2006–2010. MMWR Morb. Mortal. Wkly Rep. 60, 133–137 (2011).

    Google Scholar 

  144. Centers for Disease Control and Prevention (CDC). Syphilis testing algorithms using treponemal tests for initial screening — four laboratories, New York City, 2005–2006. MMWR Morb. Mortal. Wkly Rep. 57, 872–875 (2008).

    Google Scholar 

  145. Peeling, R. W. & Ye, H. Diagnostic tools for preventing and managing maternal and congenital syphilis: an overview. Bull. World Health Organ. 82, 439–446 (2004).

    Google Scholar 

  146. Benzaken, A. S. et al. Field performance of a rapid point-of-care diagnostic test for antenatal syphilis screening in the Amazon region. Int. J. STD AIDS 22, 15–18 (2011).

    Google Scholar 

  147. Mabey, D. et al. Prospective, multi-centre clinic-based evaluation of four rapid diagnostic tests for syphilis. Sex. Transm. Infect. 82 (Suppl. 5), 13–16 (2006).

    Google Scholar 

  148. Mabey, D. C. et al. Point-of-care tests to strengthen health systems and save newborn lives: the case of syphilis. PLoS Med. 9, e1001233 (2012).

    Google Scholar 

  149. Siedner, M., Zapitz, V., Ishida, M., De La Roca, R. & Klausner, J. D. Performance of rapid syphilis tests in venous and fingerstick whole blood specimens. Sex. Transm. Dis. 31, 557–560 (2004).

    Google Scholar 

  150. Tinajeros, F. et al. Diagnostic accuracy of a point-of-care syphilis test when used among pregnant women in Bolivia. Sex. Transm. Infect. 82 (Suppl. 5), 17–21 (2006).

    Google Scholar 

  151. West, B. Performance of the rapid plasma reagin and the rapid syphilis screening tests in the diagnosis of syphilis in field conditions in rural Africa. Sex. Transm. Infect. 78, 282–285 (2002).

    Google Scholar 

  152. Gianino, M. M. et al. Performance and costs of a rapid syphilis test in an urban population at high risk for sexually transmitted infections. J. Prev. Med. Hyg. 48, 118–122 (2007).

    Google Scholar 

  153. Hernández-Trejo, M., Hernández-Prado, B., Uribe-Salas, F., Juárez-Figueroa, L. & Conde-González, C. J. Maternal and congenital syphilis in two Mexican hospitals: evaluation of a rapid diagnostic test [Spanish]. Rev. Invest. Clin. 58, 119–125 (2006).

    Google Scholar 

  154. Lien, T. X. et al. Evaluation of rapid diagnostic tests for the detection of human immunodeficiency virus types 1 and 2, hepatitis B surface antigen, and syphilis in Ho Chi Minh City. Am. J. Trop. Med. Hyg. 62, 301–309 (2000).

    Google Scholar 

  155. Galvao, T. F. et al. Safety of benzathine penicillin for preventing congenital syphilis: a systematic review. PLoS ONE 8, e56463 (2013).

    Google Scholar 

  156. Castro, A. R. et al. Novel point-of-care test for simultaneous detection of nontreponemal and treponemal antibodies in patients with syphilis. J. Clin. Microbiol. 48, 4615–4619 (2010).

    Google Scholar 

  157. Yin, Y.-P. et al. A dual point-of-care test shows good performance in simultaneously detecting nontreponemal and treponemal antibodies in patients with syphilis: a multisite evaluation study in China. Clin. Infect. Dis. 56, 659–665 (2012).

    Google Scholar 

  158. Causer, L. M. et al. An evaluation of a novel dual treponemal/nontreponemal point-of-care test for syphilis as a tool to distinguish active from past treated infection. Clin. Infect. Dis. 61, 184–191 (2015).

    Google Scholar 

  159. Gliddon, H. D. et al. A systematic review and meta-analysis of studies evaluating the performance and operational characteristics of dual point-of-care tests for HIV and syphilis. Sex. Transm. Infect.http://dx.doi.org/10.1136/sextrans-2016-053069 (2017).

  160. Ghanem, K. G. & Workowski, K. A. Management of adult syphilis. Clin. Infect. Dis. 53 (Suppl. 3), 110–128 (2011).

    Google Scholar 

  161. Kingston, M. et al. UK national guidelines on the management of syphilis 2015. Int. J. STD AIDS 27, 421–446 (2016).

    Google Scholar 

  162. Marra, C. M. et al. The rapid plasma reagin test cannot replace the venereal disease research laboratory test for neurosyphilis diagnosis. Sex. Transm. Dis. 39, 453–457 (2012).

    Google Scholar 

  163. Marra, C. M., Tantalo, L. C., Maxwell, C. L., Dougherty, K. & Wood, B. Alternative cerebrospinal fluid tests to diagnose neurosyphilis in HIV-infected individuals. Neurology 63, 85–88 (2004).

    Google Scholar 

  164. Marra, C. M., Maxwell, C. L., Dunaway, S. B., Sahi, S. K. & Tantalo, L. C. Cerebrospinal Fluid Treponema pallidum particle agglutination assay for neurosyphilis diagnosis. J. Clin. Microbiol. 55, 1865–1870 (2017).

    Google Scholar 

  165. Marra, C. M. et al. Cerebrospinal fluid abnormalities in patients with syphilis: association with clinical and laboratory features. J. Infect. Dis. 189, 369–376 (2004).

    Google Scholar 

  166. Meyers, D. et al. USPSTF recommendations for STI screening. Am. Fam. Physician 77, 819–824 (2008).

    Google Scholar 

  167. Owusu-Ofori, A., Parry, C. & Bates, I. Transfusion-transmitted syphilis in teaching hospital. Emerg. Infect. Dis. 17, 2080–2082 (2011).

    Google Scholar 

  168. Food and Drug Administration. Requirements for blood and blood components intended for transfusion or for further manufacturing use; Federal Register, Rules and Regulations. Government Publishing Officehttps://www.gpo.gov/fdsys/pkg/FR-2015-05-22/pdf/2015-12228.pdf (2015).

  169. Tapko, J. B., Toure, B. & Sambo, L. G. Status of blood safety in the WHO African region: report of the 2010 survey. World Health Organizationhttp://www.afro.who.int/index.php?option=com_docman&task=doc_download&gid=9135&Itemid=2593 (2014).

  170. Hossain, M., Broutet, N. & Hawkes, S. The elimination of congenital syphilis: a comparison of the proposed World Health Organization action plan for the elimination of congenital syphilis with existing national maternal and congenital syphilis policies. Sex. Transm. Dis. 34, S22–S30 (2007).

    Google Scholar 

  171. Hawkes, S., Matin, N., Broutet, N. & Low, N. Effectiveness of interventions to improve screening for syphilis in pregnancy: a systematic review and meta-analysis. Lancet Infect. Dis. 11, 684–691 (2011). This systematic review of 10 studies showed that interventions to improve the coverage and effect of screening programmes for antenatal syphilis could reduce the syphilis-attributable incidence of stillbirth and perinatal death by 50%.

    Google Scholar 

  172. Swartzendruber, A., Steiner, R. J., Adler, M. R., Kamb, M. L. & Newman, L. M. Introduction of rapid syphilis testing in antenatal care: a systematic review of the impact on HIV and syphilis testing uptake and coverage. Int. J. Gynecol. Obstet. 130, S15–S21 (2015).

    Google Scholar 

  173. Valderrama, J., Zacarías, F. & Mazin, R. Sífilis materna y sífilis congénita en América Latina: un problema grave de solución sencilla [Spanish]. Rev. Panam. Salud Pública 16, 211–217 (2004).

    Google Scholar 

  174. Pan American Health Organization. Update 2014: elimination of mother-to-child transmission of HIV and syphilis in the Americas. Pan American Health Organizationhttp://iris.paho.org/xmlui/handle/123456789/31357 (2014).

  175. Cantor, A. G., Pappas, M., Daeges, M. & Nelson, H. D. Screening for syphilis. JAMA 315, 2328 (2016).

    Google Scholar 

  176. Tuite, A. & Fisman, D. Go big or go home: impact of screening coverage on syphilis infection dynamics. Sex. Transm. Infect. 92, 49–54 (2015).

    Google Scholar 

  177. Reed, J. L. et al. Adolescent patient preferences surrounding partner notification and treatment for sexually transmitted infections. Acad. Emerg. Med. 22, 61–66 (2014).

    Google Scholar 

  178. Tucker, J. D. et al. Organizational characteristics of HIV/syphilis testing services for men who have sex with men in South China: a social entrepreneurship analysis and implications for creating sustainable service models. BMC Infect. Dis.http://dx.doi.org/10.1186/s12879-014-0601-5 (2014).

  179. Tucker, J. D., Fenton, K. A., Peckham, R. & Peeling, R. W. Social Entrepreneurship for Sexual Health (SESH): a new approach for enabling delivery of sexual health services among most-at-risk populations. PLoS Med. 9, e1001266 (2012).

    Google Scholar 

  180. Dubourg, G. & Raoult, D. The challenges of preexposure prophylaxis for bacterial sexually transmitted infections. Clin. Microbiol. Infect. 22, 753–756 (2016).

    Google Scholar 

  181. Molina, J.-M. et al. On-demand preexposure prophylaxis in men at high risk for HIV-1 infection. N. Engl. J. Med. 373, 2237–2246 (2015).

    Google Scholar 

  182. NIH Consensus Development Panel on Infectious Disease Testing for Blood Transfusions et al. Infectious disease testing for blood transfusions. JAMA 274, 1374–1379 (1995).

    Google Scholar 

  183. Gardella, C., Marfin, A. A., Kahn, R. H., Swint, E. & Markowitz, L. E. Persons with early syphilis identified through blood or plasma donation screening in the United States. J. Infect. Dis. 185, 545–549 (2002).

    Google Scholar 

  184. Marfin, A. A. et al. Amplification of the DNA polymerase I gene of Treponema pallidum from whole blood of persons with syphilis. Diagn. Microbiol. Infect. Dis. 40, 163–166 (2001).

    Google Scholar 

  185. Chambers, R. W., Foley, H. T. & Schmidt, P. J. Transmission of syphilis by fresh blood components. Transfusion 9, 32–34 (1969).

    Google Scholar 

  186. Seña, A. C. et al. A systematic review of syphilis serological treatment outcomes in HIV-infected and HIV-uninfected persons: rethinking the significance of serological non-responsiveness and the serofast state after therapy. BMC Infect. Dis. 15, 479 (2015).

    Google Scholar 

  187. Seña, A. C. et al. Predictors of serological cure and serofast state after treatment in HIV-negative persons with early syphilis. Clin. Infect. Dis. 53, 1092–1099 (2011).

    Google Scholar 

  188. Riedner, G. et al. Single-dose azithromycin versus penicillin G benzathine for the treatment of early syphilis. N. Engl. J. Med. 353, 1236–1244 (2005).

    Google Scholar 

  189. Hook III, E. W. et al. A phase III equivalence trial of azithromycin versus benzathine penicillin for treatment of early syphilis. J. Infect. Dis. 201, 1729–1735 (2010).

    Google Scholar 

  190. Lukehart, S. A. et al. Macrolide resistance inTreponema pallidum in the United States and Ireland. N. Engl. J. Med. 351, 154–158 (2004).

    Google Scholar 

  191. Zhou, P. et al. Azithromycin treatment failure among primary and secondary syphilis patients in Shanghai. Sex. Transm. Dis. 37, 726–729 (2010).

    Google Scholar 

  192. Read, P. et al. Azithromycin-resistant syphilis-causing strains in Sydney, Australia: prevalence and risk factors. J. Clin. Microbiol. 52, 2776–2781 (2014).

    Google Scholar 

  193. Stamm, L. V. Global challenge of antibiotic-resistant Treponema pallidum. Antimicrob. Agents Chemother. 54, 583–589 (2010).

    Google Scholar 

  194. Grillová, L. et al. Molecular typing of Treponema pallidum in the Czech Republic during 2011 to 2013: increased prevalence of identified genotypes and of isolates with macrolide resistance. J. Clin. Microbiol. 52, 3693–3700 (2014).

    Google Scholar 

  195. Ghanem, K. G. et al. Antiretroviral therapy is associated with reduced serologic failure rates for syphilis among HIV-infected patients. Clin. Infect. Dis. 47, 258–265 (2008).

    Google Scholar 

  196. Ghanem, K. G. et al. Neurosyphilis in a clinical cohort of HIV-1-infected patients. AIDS 22, 1145–1151 (2008).

    Google Scholar 

  197. Tuddenham, S. & Ghanem, K. G. Emerging trends and persistent challenges in the management of adult syphilis. BMC Infect. Dis. 15, 351 (2015).

    Google Scholar 

  198. Zetola, N. M. & Klausner, J. D. Syphilis and HIV infection: an update. Clin. Infect. Dis. 44, 1222–1228 (2007).

    Google Scholar 

  199. Yang, C.-J. et al. One dose versus three weekly doses of benzathine penicillin G for patients co-infected with HIV and early syphilis: a multicenter, prospective observational study. PLoS ONE 9, e109667 (2014).

    Google Scholar 

  200. Ganesan, A. et al. A single dose of benzathine penicillin G is as effective as multiple doses of benzathine penicillin G for the treatment of hiv-infected persons with early syphilis. Clin. Infect. Dis. 60, 653–660 (2014).

    Google Scholar 

  201. Watson-Jones, D. et al. Syphilis in pregnancy in Tanzania. II. The effectiveness of antenatal syphilis screening and single-dose benzathine penicillin treatment for the prevention of adverse pregnancy outcomes. J. Infect. Dis. 186, 948–957 (2002).

    Google Scholar 

  202. Terris-Prestholt, F. Is antenatal syphilis screening still cost effective in sub-Saharan Africa. Sex. Transm. Infect. 79, 375–381 (2003).

    Google Scholar 

  203. Singh, A. E. & Romanowski, B. Syphilis: review with emphasis on clinical, epidemiologic, and some biologic features. Clin. Microbiol. Rev. 12, 187–209 (1999). An excellent review that covered all aspects of syphilis.

    Google Scholar 

  204. Centers for Disease Control and Prevention. 2015 Sexually Transmitted Diseases Treatment Guidelines: Syphilis. Centers for Disease Control and Preventionhttps://www.cdc.gov/std/tg2015/syphilis.htm (2015).

  205. Harman, N. B. in Venereal Disease 33–44 (Methuen & Company, Limited 1917).

    Google Scholar 

  206. Frith, J. Syphilis — its early history and treatment until penicillin and the debate on its origins. J. Mil. Veterans Health 20, 49–28 (2012).

    Google Scholar 

  207. Sartin, J. S. & Perry, H. O. From mercury to malaria to penicillin: the history of the treatment of syphilis at the Mayo Clinic — 1916–1955. J. Am. Acad. Dermatol. 32, 255–261 (1995).

    Google Scholar 

  208. Lopes, C., Powell, M. L. & Santos, A. L. Syphilis and cirrhosis: a lethal combination in a XIX century individual identified from the Medical Schools Collection at the University of Coimbra (Portugal). Mem. Inst. Oswaldo Cruz 105, 1050–1053 (2010).

    Google Scholar 

  209. Bjarne, B. The “rade” disease--a Norwegian tragedy [Norwegian]. Tidsskr. Nor. Laegeforen. 24, 3557–3558 (2003).

    Google Scholar 

  210. Division of STD Prevention et al. Sexually Transmitted Diseases Surveillance 2015. Centers for Disease Control and Preventionhttps://www.cdc.gov/std/stats15/ (2015).

  211. Ropper, A. H. Two centuries of neurology and psychiatry in the journal. N. Engl. J. Med. 367, 58–65 (2012).

    Google Scholar 

  212. Oliver, S. E. et al. Ocular syphilis — eight jurisdictions, United States, 2014–2015. MMWR. Morb. Mortal. Wkly. Rep. 65, 1185–1188 (2016).

    Google Scholar 

  213. Moradi, A. et al. Clinical features and incidence rates of ocular complications in patients with ocular syphilis. Am. J. Ophthalmol. 159, 334–343.e1 (2015).

    Google Scholar 

  214. Andreyev, S. V., Setko, N. P. & Voronina, L. G. Assessment of quality of life of patients with syphilis. Prakt. Med. Infect. Dis. 7, 1 (2014).

    Google Scholar 

  215. Ferreira, A., Young, T., Mathews, C., Zunza, M. & Low, N. Strategies for partner notification for sexually transmitted infections, including HIV. Cochrane Database Syst. Rev. 3, CD002843 (2013).

  216. Rzepa, T., Jakubowicz, O., Witmanowski, H. & Zaba, R. Disease-induced level of shame in patients with acne, psoriasis and syphilis. Postepy Dermatol. Alergol. 30, 233–236 (2013).

    Google Scholar 

  217. Wu, D. & Hawkes, S. Eliminating mother-to-child transmission of syphilis: the need for more consistent political commitment. J. Publ. Health Emerg. 1, 41 (2016).

    Google Scholar 

  218. Burden, C. et al. From grief, guilt pain and stigma to hope and pride — a systematic review and meta-analysis of mixed-method research of the psychosocial impact of stillbirth. BMC Pregnancy Childbirthhttp://dx.doi.org/10.1186/s12884-016-0800-8 (2016).

  219. Heazell, A. E. P. et al. Stillbirths: economic and psychosocial consequences. Lancet 387, 604–616 (2016).

    Google Scholar 

  220. Kiguli, J. et al. Stillbirths in sub-Saharan Africa: unspoken grief. Lancet 387, e16–e18 (2016).

    Google Scholar 

  221. Fitzgerald, D. W. & Behets, F. M. A piece of my mind. Beyond folklore. JAMA 288, 2791–2792 (2002).

    Google Scholar 

  222. Meheus, A. & Antal, G. M. The endemic treponematoses: not yet eradicated. World Health Stat. Q. 45, 228–237 (1992).

    Google Scholar 

  223. Taylor, M. M. et al. Estimating benzathine penicillin need for the treatment of pregnant women diagnosed with syphilis during antenatal care in high-morbidity countries. PLoS ONE 11, e0159483 (2016).

    Google Scholar 

  224. Peeling, R. W. & Mabey, D. Celebrating the decline in syphilis in pregnancy: a sobering reminder of what's left to do. Lancet. Glob. Health 4, e503–e504 (2016).

    Google Scholar 

  225. World Health Organization. Global guidance on criteria and processes for validation: elimination of mother-to-child transmission of HIV and syphilis. >WHOhttp://apps.who.int/iris/bitstream/10665/112858/1/9789241505888_eng.pdf (2014).

  226. World Health Organization. WHO information note on the use of dual HIV/Syphilis rapid diagnostic tests (RDT). WHOhttp://www.who.int/reproductivehealth/publications/rtis/dual-hiv-syphilis-diagnostic-tests/en/ (2017).

  227. Wedderburn, C. J., Murtagh, M., Toskin, I. & Peeling, R. W. Using electronic readers to monitor progress toward elimination of mother-to-child transmission of HIV and syphilis: an opinion piece. Int. J. Gynecol. Obstet. 130, S81–S83 (2015).

    Google Scholar 

  228. Guo, T., Patnaik, R., Kuhlmann, K., Rai, A. J. & Sia, S. K. Smartphone dongle for simultaneous measurement of hemoglobin concentration and detection of HIV antibodies. Lab Chip 15, 3514–3520 (2015).

    Google Scholar 

  229. Peeling, R. W. Diagnostics in a digital age: an opportunity to strengthen health systems and improve health outcomes. Int. Health 7, 384–389 (2015).

    Google Scholar 

  230. Hook, E. W. Syphilis. Lancet 389, 1550–1557 (2017).

    Google Scholar 

  231. Lewnard, J. A. & Berrang-Ford, L. Internet-based partner selection and risk for unprotected anal intercourse in sexual encounters among men who have sex with men: a meta-analysis of observational studies. Sex. Transm. Infect. 90, 290–296 (2014).

    Google Scholar 

  232. Tuddenham, S., Shah, M. & Ghanem, K. G. Syphilis and HIV: is HAART at the heart of this epidemic? Sex. Transm. Infect. 93, 311–312 (2017).

    Google Scholar 

  233. Ho, E. L., Tantalo, L. C., Jones, T., Sahi, S. K. & Marra, C. M. Point-of-care treponemal tests for neurosyphilis diagnosis. Sex. Transm. Dis. 42, 48–52 (2015).

    Google Scholar 

  234. Lin, L.-R. et al. Macrophage migration inhibitory factor as a novel cerebrospinal fluid marker for neurosyphilis among HIV-negative patients. Clin. Chim. Acta 463, 103–108 (2016).

    Google Scholar 

  235. Marra, C. M., Tantalo, L. C., Sahi, S. K., Maxwell, C. L. & Lukehart, S. A. CXCL13 as a cerebrospinal fluid marker for neurosyphilis in HIV-infected patients with syphilis. Sex. Transm. Dis. 37, 283–287 (2010).

    Google Scholar 

  236. Cameron, C. E. & Lukehart, S. A. Current status of syphilis vaccine development: need, challenges, prospects. Vaccine 32, 1602–1609 (2014). This review described the progress in vaccine development for syphilis and all the challenges that need to be overcome.

    Google Scholar 

  237. Miller, J. N. Immunity in experimental syphilis. VI. Successful vaccination of rabbits with Treponema pallidum, Nichols strain, attenuated by -irradiation. J. Immunol. 110, 1206–1215 (1973).

    Google Scholar 

  238. Arora, N. et al. Origin of modern syphilis and emergence of a pandemic Treponema pallidum cluster. Nat. Microbiol. 2, 16245 (2016).

    Google Scholar 

  239. Izard, J. et al. Cryo-electron tomography elucidates the molecular architecture of Treponema pallidum, the syphilis spirochete. J. Bacteriol. 191, 7566–7580 (2009).

    Google Scholar 

  240. Liu, J. et al. Cellular architecture of Treponema pallidum: novel flagellum, periplasmic cone, and cell envelope as revealed by cryo electron tomography. J. Mol. Biol. 403, 546–561 (2010).

    Google Scholar 

  241. Brautigam, C. A., Deka, R. K., Liu, W. Z. & Norgard, M. V. Insights into the potential function and membrane organization of the TP0435 (Tp17) lipoprotein fromTreponema pallidum derived from structural and biophysical analyses. Protein Sci. 24, 11–19 (2014).

    Google Scholar 

  242. Erkens, G. B., Majsnerowska, M., ter Beek, J. & Slotboom, D. J. Energy coupling factor-type ABC transporters for vitamin uptake in prokaryotes. Biochemistry 51, 4390–4396 (2012).

    Google Scholar 

  243. Boudker, O., Ryan, R. M., Yernool, D., Shimamoto, K. & Gouaux, E. Coupling substrate and ion binding to extracellular gate of a sodium-dependent aspartate transporter. Nature 445, 387–393 (2007).

    Google Scholar 

  244. Brautigam, C. A., Deka, R. K., Schuck, P., Tomchick, D. R. & Norgard, M. V. Structural and thermodynamic characterization of the interaction between two periplasmic Treponema pallidum lipoproteins that are components of a TPR-protein-associated TRAP transporter (TPAT). J. Mol. Biol. 420, 70–86 (2012).

    Google Scholar 

  245. Deka, R. K. et al. Structural, bioinformatic, and in vivo analyses of two Treponema pallidum lipoproteins reveal a unique TRAP transporter. J. Mol. Biol. 416, 678–696 (2012).

    Google Scholar 

  246. Park, I. U. et al. Screening for syphilis with the treponemal immunoassay: analysis of discordant serology results and implications for clinical management. J. Infect. Dis. 204, 1297–1304 (2011).

    Google Scholar 

  247. Binnicker, M. J., Yao, J. D. & Cockerill, F. R. Non-treponemal serologic tests: a supplemental, not confirmatory testing approach. Clin. Infect. Dis. 52, 274–275 (2010).

    Google Scholar 

  248. Lipinsky, D., Schreiber, L., Kopel, V. & Shainberg, B. Validation of reverse sequence screening for syphilis. J. Clin. Microbiol. 50, 1501 (2012).

    Google Scholar 

  249. Tong, M.-L. et al. Analysis of 3 algorithms for syphilis serodiagnosis and implications for clinical management. Clin. Infect. Dis. 58, 1116–1124 (2014).

    Google Scholar 

  250. Tucker, J. D. et al. Accelerating worldwide syphilis screening through rapid testing: a systematic review. Lancet Infect. Dis. 10, 381–386 (2010).

    Google Scholar 

  251. Jafari, Y. et al. Are Treponema pallidum specific rapid and point-of-care tests for syphilis accurate enough for screening in resource limited settings? Evidence from a meta-analysis. PLoS ONE 8, e54695 (2013).

    Google Scholar 

  252. World Health Organization. Laboratory diagnosis of sexually transmitted infections, including human immunodeficiency virus. WHOhttp://who.int/reproductivehealth/publications/rtis/9789241505840/en/ (2013).

Download references

Acknowledgements

The findings and conclusions in this report are those of the authors and do not necessarily represent the views of the US Centers for Disease Control and Prevention.

Author information

Authors and Affiliations

Authors

Contributions

Introduction (R.W.P. and D.M.); Epidemiology (D.M. and X.-S.C.); Mechanisms/pathophysiology (J.D.R.); Diagnosis, screening and prevention (R.W.P., M.L.K., X.-S.C. and A.S.B.); Management (D.M.); Quality of life (M.K. and A.S.B.); Outlook (all authors); overview of the Primer (R.W.P.).

Corresponding author

Correspondence to Rosanna W. Peeling.

Ethics declarations

Competing interests

J.D.R. receives royalties for licensing of syphilis diagnostics reagents. The other authors declare no competing interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peeling, R., Mabey, D., Kamb, M. et al. Syphilis. Nat Rev Dis Primers 3, 17073 (2017). https://doi.org/10.1038/nrdp.2017.73

Download citation

  • Published:

  • DOI: https://doi.org/10.1038/nrdp.2017.73

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing